Improved spike inference accuracy by estimating the peak amplitude of unitary [Ca2+] transients in weakly GCaMP6f-expressing hippocampal pyramidal cells
Éltes T, Szoboszlay M, Szigeti MK, Nusser Z. 2019. Improved spike inference accuracy by estimating the peak amplitude of unitary [Ca2+] transients in weakly GCaMP6f-expressing hippocampal pyramidal cells. Journal of Physiology. 597(11), 2925–2947.
Download (ext.)
https://doi.org/10.1113/JP277681
[Published Version]
DOI
Journal Article
| Published
| English
Scopus indexed
Author
Éltes, Tímea;
Szoboszlay, Miklos;
Kerti-Szigeti, KatalinISTA ;
Nusser, Zoltan
Department
Abstract
Investigating neuronal activity using genetically encoded Ca2+ indicators in behaving animals is hampered by inaccuracies in spike inference from fluorescent tracers. Here we combine two‐photon [Ca2+] imaging with cell‐attached recordings, followed by post hoc determination of the expression level of GCaMP6f, to explore how it affects the amplitude, kinetics and temporal summation of somatic [Ca2+] transients in mouse hippocampal pyramidal cells (PCs). The amplitude of unitary [Ca2+] transients (evoked by a single action potential) negatively correlates with GCaMP6f expression, but displays large variability even among PCs with similarly low expression levels. The summation of fluorescence signals is frequency‐dependent, supralinear and also shows remarkable cell‐to‐cell variability. We performed experimental data‐based simulations and found that spike inference error rates using MLspike depend strongly on unitary peak amplitudes and GCaMP6f expression levels. We provide simple methods for estimating the unitary [Ca2+] transients in individual weakly GCaMP6f‐expressing PCs, with which we achieve spike inference error rates of ∼5%.
Publishing Year
Date Published
2019-06-01
Journal Title
Journal of Physiology
Publisher
Wiley
Volume
597
Issue
11
Page
2925–2947
ISSN
eISSN
IST-REx-ID
Cite this
Éltes T, Szoboszlay M, Szigeti MK, Nusser Z. Improved spike inference accuracy by estimating the peak amplitude of unitary [Ca2+] transients in weakly GCaMP6f-expressing hippocampal pyramidal cells. Journal of Physiology. 2019;597(11):2925–2947. doi:10.1113/JP277681
Éltes, T., Szoboszlay, M., Szigeti, M. K., & Nusser, Z. (2019). Improved spike inference accuracy by estimating the peak amplitude of unitary [Ca2+] transients in weakly GCaMP6f-expressing hippocampal pyramidal cells. Journal of Physiology. Wiley. https://doi.org/10.1113/JP277681
Éltes, Tímea, Miklos Szoboszlay, Margit Katalin Szigeti, and Zoltan Nusser. “Improved Spike Inference Accuracy by Estimating the Peak Amplitude of Unitary [Ca2+] Transients in Weakly GCaMP6f-Expressing Hippocampal Pyramidal Cells.” Journal of Physiology. Wiley, 2019. https://doi.org/10.1113/JP277681.
T. Éltes, M. Szoboszlay, M. K. Szigeti, and Z. Nusser, “Improved spike inference accuracy by estimating the peak amplitude of unitary [Ca2+] transients in weakly GCaMP6f-expressing hippocampal pyramidal cells,” Journal of Physiology, vol. 597, no. 11. Wiley, pp. 2925–2947, 2019.
Éltes T, Szoboszlay M, Szigeti MK, Nusser Z. 2019. Improved spike inference accuracy by estimating the peak amplitude of unitary [Ca2+] transients in weakly GCaMP6f-expressing hippocampal pyramidal cells. Journal of Physiology. 597(11), 2925–2947.
Éltes, Tímea, et al. “Improved Spike Inference Accuracy by Estimating the Peak Amplitude of Unitary [Ca2+] Transients in Weakly GCaMP6f-Expressing Hippocampal Pyramidal Cells.” Journal of Physiology, vol. 597, no. 11, Wiley, 2019, pp. 2925–2947, doi:10.1113/JP277681.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access
Export
Marked PublicationsOpen Data ISTA Research Explorer
Web of Science
View record in Web of Science®Sources
PMID: 31006863
PubMed | Europe PMC