Tracing the origin of adult intestinal stem cells
Guiu J, Hannezo EB, Yui S, Demharter S, Ulyanchenko S, Maimets M, Jørgensen A, Perlman S, Lundvall L, Mamsen LS, Larsen A, Olesen RH, Andersen CY, Thuesen LL, Hare KJ, Pers TH, Khodosevich K, Simons BD, Jensen KB. 2019. Tracing the origin of adult intestinal stem cells. Nature. 570, 107–111.
Download (ext.)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6986928
[Submitted Version]
Journal Article
| Published
| English
Scopus indexed
Author
Guiu, Jordi;
Hannezo, Edouard ISTA ;
Yui, Shiro;
Demharter, Samuel;
Ulyanchenko, Svetlana;
Maimets, Martti;
Jørgensen, Anne;
Perlman, Signe;
Lundvall, Lene;
Mamsen, Linn Salto;
Larsen, Agnete;
Olesen, Rasmus H.
All
All
Department
Abstract
Adult intestinal stem cells are located at the bottom of crypts of Lieberkühn, where they express markers such as LGR5 1,2 and fuel the constant replenishment of the intestinal epithelium1. Although fetal LGR5-expressing cells can give rise to adult intestinal stem cells3,4, it remains unclear whether this population in the patterned epithelium represents unique intestinal stem-cell precursors. Here we show, using unbiased quantitative lineage-tracing approaches, biophysical modelling and intestinal transplantation, that all cells of the mouse intestinal epithelium—irrespective of their location and pattern of LGR5 expression in the fetal gut tube—contribute actively to the adult intestinal stem cell pool. Using 3D imaging, we find that during fetal development the villus undergoes gross remodelling and fission. This brings epithelial cells from the non-proliferative villus into the proliferative intervillus region, which enables them to contribute to the adult stem-cell niche. Our results demonstrate that large-scale remodelling of the intestinal wall and cell-fate specification are closely linked. Moreover, these findings provide a direct link between the observed plasticity and cellular reprogramming of differentiating cells in adult tissues following damage5,6,7,8,9, revealing that stem-cell identity is an induced rather than a hardwired property.
Publishing Year
Date Published
2019-06-06
Journal Title
Nature
Publisher
Springer Nature
Volume
570
Page
107-111
ISSN
eISSN
IST-REx-ID
Cite this
Guiu J, Hannezo EB, Yui S, et al. Tracing the origin of adult intestinal stem cells. Nature. 2019;570:107-111. doi:10.1038/s41586-019-1212-5
Guiu, J., Hannezo, E. B., Yui, S., Demharter, S., Ulyanchenko, S., Maimets, M., … Jensen, K. B. (2019). Tracing the origin of adult intestinal stem cells. Nature. Springer Nature. https://doi.org/10.1038/s41586-019-1212-5
Guiu, Jordi, Edouard B Hannezo, Shiro Yui, Samuel Demharter, Svetlana Ulyanchenko, Martti Maimets, Anne Jørgensen, et al. “Tracing the Origin of Adult Intestinal Stem Cells.” Nature. Springer Nature, 2019. https://doi.org/10.1038/s41586-019-1212-5.
J. Guiu et al., “Tracing the origin of adult intestinal stem cells,” Nature, vol. 570. Springer Nature, pp. 107–111, 2019.
Guiu J, Hannezo EB, Yui S, Demharter S, Ulyanchenko S, Maimets M, Jørgensen A, Perlman S, Lundvall L, Mamsen LS, Larsen A, Olesen RH, Andersen CY, Thuesen LL, Hare KJ, Pers TH, Khodosevich K, Simons BD, Jensen KB. 2019. Tracing the origin of adult intestinal stem cells. Nature. 570, 107–111.
Guiu, Jordi, et al. “Tracing the Origin of Adult Intestinal Stem Cells.” Nature, vol. 570, Springer Nature, 2019, pp. 107–11, doi:10.1038/s41586-019-1212-5.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access
Export
Marked PublicationsOpen Data ISTA Research Explorer
Web of Science
View record in Web of Science®Sources
PMID: 31092921
PubMed | Europe PMC