3-manifold triangulations with small treewidth
Huszár K, Spreer J. 2019. 3-manifold triangulations with small treewidth. 35th International Symposium on Computational Geometry. SoCG: Symposium on Computational Geometry, LIPIcs, vol. 129, 44:1-44:20.
Download
Conference Paper
| Published
| English
Scopus indexed
Author
Huszár, KristófISTA ;
Spreer, Jonathan
Corresponding author has ISTA affiliation
Department
Series Title
LIPIcs
Abstract
Motivated by fixed-parameter tractable (FPT) problems in computational topology, we consider the treewidth tw(M) of a compact, connected 3-manifold M, defined to be the minimum treewidth of the face pairing graph of any triangulation T of M. In this setting the relationship between the topology of a 3-manifold and its treewidth is of particular interest. First, as a corollary of work of Jaco and Rubinstein, we prove that for any closed, orientable 3-manifold M the treewidth tw(M) is at most 4g(M)-2, where g(M) denotes Heegaard genus of M. In combination with our earlier work with Wagner, this yields that for non-Haken manifolds the Heegaard genus and the treewidth are within a constant factor. Second, we characterize all 3-manifolds of treewidth one: These are precisely the lens spaces and a single other Seifert fibered space. Furthermore, we show that all remaining orientable Seifert fibered spaces over the 2-sphere or a non-orientable surface have treewidth two. In particular, for every spherical 3-manifold we exhibit a triangulation of treewidth at most two. Our results further validate the parameter of treewidth (and other related parameters such as cutwidth or congestion) to be useful for topological computing, and also shed more light on the scope of existing FPT-algorithms in the field.
Keywords
Publishing Year
Date Published
2019-06-01
Proceedings Title
35th International Symposium on Computational Geometry
Publisher
Schloss Dagstuhl - Leibniz-Zentrum für Informatik
Volume
129
Page
44:1-44:20
Conference
SoCG: Symposium on Computational Geometry
Conference Location
Portland, Oregon, United States
Conference Date
2019-06-18 – 2019-06-21
ISBN
ISSN
IST-REx-ID
Cite this
Huszár K, Spreer J. 3-manifold triangulations with small treewidth. In: 35th International Symposium on Computational Geometry. Vol 129. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2019:44:1-44:20. doi:10.4230/LIPIcs.SoCG.2019.44
Huszár, K., & Spreer, J. (2019). 3-manifold triangulations with small treewidth. In 35th International Symposium on Computational Geometry (Vol. 129, p. 44:1-44:20). Portland, Oregon, United States: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2019.44
Huszár, Kristóf, and Jonathan Spreer. “3-Manifold Triangulations with Small Treewidth.” In 35th International Symposium on Computational Geometry, 129:44:1-44:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. https://doi.org/10.4230/LIPIcs.SoCG.2019.44.
K. Huszár and J. Spreer, “3-manifold triangulations with small treewidth,” in 35th International Symposium on Computational Geometry, Portland, Oregon, United States, 2019, vol. 129, p. 44:1-44:20.
Huszár K, Spreer J. 2019. 3-manifold triangulations with small treewidth. 35th International Symposium on Computational Geometry. SoCG: Symposium on Computational Geometry, LIPIcs, vol. 129, 44:1-44:20.
Huszár, Kristóf, and Jonathan Spreer. “3-Manifold Triangulations with Small Treewidth.” 35th International Symposium on Computational Geometry, vol. 129, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, p. 44:1-44:20, doi:10.4230/LIPIcs.SoCG.2019.44.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
2019_LIPIcs-Huszar.pdf
905.88 KB
Access Level
Open Access
Date Uploaded
2019-06-12
MD5 Checksum
29d18c435368468aa85823dabb157e43
Material in ISTA:
Part of this Dissertation
Export
Marked PublicationsOpen Data ISTA Research Explorer
Sources
arXiv 1812.05528