Topological data analysis in information space

Edelsbrunner H, Virk Z, Wagner H. 2019. Topological data analysis in information space. 35th International Symposium on Computational Geometry. SoCG 2019: Symposium on Computational Geometry, LIPIcs, vol. 129, 31:1-31:14.

Download
OA 2019_LIPICS_Edelsbrunner.pdf 1.36 MB [Published Version]

Conference Paper | Published | English

Scopus indexed

Corresponding author has ISTA affiliation

Department
Series Title
LIPIcs
Abstract
Various kinds of data are routinely represented as discrete probability distributions. Examples include text documents summarized by histograms of word occurrences and images represented as histograms of oriented gradients. Viewing a discrete probability distribution as a point in the standard simplex of the appropriate dimension, we can understand collections of such objects in geometric and topological terms. Importantly, instead of using the standard Euclidean distance, we look into dissimilarity measures with information-theoretic justification, and we develop the theory needed for applying topological data analysis in this setting. In doing so, we emphasize constructions that enable the usage of existing computational topology software in this context.
Publishing Year
Date Published
2019-06-01
Proceedings Title
35th International Symposium on Computational Geometry
Publisher
Schloss Dagstuhl - Leibniz-Zentrum für Informatik
Volume
129
Page
31:1-31:14
Conference
SoCG 2019: Symposium on Computational Geometry
Conference Location
Portland, OR, United States
Conference Date
2019-06-18 – 2019-06-21
IST-REx-ID

Cite this

Edelsbrunner H, Virk Z, Wagner H. Topological data analysis in information space. In: 35th International Symposium on Computational Geometry. Vol 129. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2019:31:1-31:14. doi:10.4230/LIPICS.SOCG.2019.31
Edelsbrunner, H., Virk, Z., & Wagner, H. (2019). Topological data analysis in information space. In 35th International Symposium on Computational Geometry (Vol. 129, p. 31:1-31:14). Portland, OR, United States: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPICS.SOCG.2019.31
Edelsbrunner, Herbert, Ziga Virk, and Hubert Wagner. “Topological Data Analysis in Information Space.” In 35th International Symposium on Computational Geometry, 129:31:1-31:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. https://doi.org/10.4230/LIPICS.SOCG.2019.31.
H. Edelsbrunner, Z. Virk, and H. Wagner, “Topological data analysis in information space,” in 35th International Symposium on Computational Geometry, Portland, OR, United States, 2019, vol. 129, p. 31:1-31:14.
Edelsbrunner H, Virk Z, Wagner H. 2019. Topological data analysis in information space. 35th International Symposium on Computational Geometry. SoCG 2019: Symposium on Computational Geometry, LIPIcs, vol. 129, 31:1-31:14.
Edelsbrunner, Herbert, et al. “Topological Data Analysis in Information Space.” 35th International Symposium on Computational Geometry, vol. 129, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, p. 31:1-31:14, doi:10.4230/LIPICS.SOCG.2019.31.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2019-07-24
MD5 Checksum
8ec8720730d4c789bf7b06540f1c29f4


Export

Marked Publications

Open Data ISTA Research Explorer

Sources

arXiv 1903.08510

Search this title in

Google Scholar
ISBN Search