EXO70C2 is a key regulatory factor for optimal tip growth of pollen

Synek L, Vukašinović N, Kulich I, Hála M, Aldorfová K, Fendrych M, Žárský V. 2017. EXO70C2 is a key regulatory factor for optimal tip growth of pollen. Plant Physiology. 174(1), 223–240.

Download
OA 2017_PlantPhysio_Synek.pdf 2.18 MB [Submitted Version]

Journal Article | Published | English

Scopus indexed
Author
Synek, Lukáš; Vukašinović, Nemanja; Kulich, Ivan; Hála, Michal; Aldorfová, Klára; Fendrych, MatyasISTA ; Žárský, Viktor
Department
Abstract
The exocyst, a eukaryotic tethering complex, coregulates targeted exocytosis as an effector of small GTPases in polarized cell growth. In land plants, several exocyst subunits are encoded by double or triple paralogs, culminating in tens of EXO70 paralogs. Out of 23 Arabidopsis thaliana EXO70 isoforms, we analyzed seven isoforms expressed in pollen. Genetic and microscopic analyses of single mutants in EXO70A2, EXO70C1, EXO70C2, EXO70F1, EXO70H3, EXO70H5, and EXO70H6 genes revealed that only a loss-of-function EXO70C2 allele resulted in a significant male-specific transmission defect (segregation 40%:51%:9%) due to aberrant pollen tube growth. Mutant pollen tubes grown in vitro exhibited an enhanced growth rate and a decreased thickness of the tip cell wall, causing tip bursts. However, exo70C2 pollen tubes could frequently recover and restart their speedy elongation, resulting in a repetitive stop-and-go growth dynamics. A pollenspecific depletion of the closest paralog, EXO70C1, using artificial microRNA in the exo70C2 mutant background, resulted in a complete pollen-specific transmission defect, suggesting redundant functions of EXO70C1 and EXO70C2. Both EXO70C1 and EXO70C2, GFP tagged and expressed under the control of their native promoters, localized in the cytoplasm of pollen grains, pollen tubes, and also root trichoblast cells. The expression of EXO70C2-GFP complemented the aberrant growth of exo70C2 pollen tubes. The absent EXO70C2 interactions with core exocyst subunits in the yeast two-hybrid assay, cytoplasmic localization, and genetic effect suggest an unconventional EXO70 function possibly as a regulator of exocytosis outside the exocyst complex. In conclusion, EXO70C2 is a novel factor contributing to the regulation of optimal tip growth of Arabidopsis pollen tubes.
Publishing Year
Date Published
2017-05-01
Journal Title
Plant Physiology
Publisher
American Society of Plant Biologists
Volume
174
Issue
1
Page
223 - 240
ISSN
IST-REx-ID
669

Cite this

Synek L, Vukašinović N, Kulich I, et al. EXO70C2 is a key regulatory factor for optimal tip growth of pollen. Plant Physiology. 2017;174(1):223-240. doi:10.1104/pp.16.01282
Synek, L., Vukašinović, N., Kulich, I., Hála, M., Aldorfová, K., Fendrych, M., & Žárský, V. (2017). EXO70C2 is a key regulatory factor for optimal tip growth of pollen. Plant Physiology. American Society of Plant Biologists. https://doi.org/10.1104/pp.16.01282
Synek, Lukáš, Nemanja Vukašinović, Ivan Kulich, Michal Hála, Klára Aldorfová, Matyas Fendrych, and Viktor Žárský. “EXO70C2 Is a Key Regulatory Factor for Optimal Tip Growth of Pollen.” Plant Physiology. American Society of Plant Biologists, 2017. https://doi.org/10.1104/pp.16.01282.
L. Synek et al., “EXO70C2 is a key regulatory factor for optimal tip growth of pollen,” Plant Physiology, vol. 174, no. 1. American Society of Plant Biologists, pp. 223–240, 2017.
Synek L, Vukašinović N, Kulich I, Hála M, Aldorfová K, Fendrych M, Žárský V. 2017. EXO70C2 is a key regulatory factor for optimal tip growth of pollen. Plant Physiology. 174(1), 223–240.
Synek, Lukáš, et al. “EXO70C2 Is a Key Regulatory Factor for Optimal Tip Growth of Pollen.” Plant Physiology, vol. 174, no. 1, American Society of Plant Biologists, 2017, pp. 223–40, doi:10.1104/pp.16.01282.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Main File(s)
Access Level
OA Open Access
Date Uploaded
2019-11-18
MD5 Checksum
97155acc6aa5f0d0a78e0589a932fe02


Export

Marked Publications

Open Data ISTA Research Explorer

Sources

PMID: 28356503
PubMed | Europe PMC

Search this title in

Google Scholar