Unexpected topology of the temperature fluctuations in the cosmic microwave background

Pranav P, Adler RJ, Buchert T, Edelsbrunner H, Jones BJT, Schwartzman A, Wagner H, Van De Weygaert R. 2019. Unexpected topology of the temperature fluctuations in the cosmic microwave background. Astronomy and Astrophysics. 627, A163.

Download
OA 2019_AstronomyAstrophysics_Pranav.pdf 14.42 MB [Published Version]

Journal Article | Published | English

Scopus indexed
Author
Pranav, Pratyush; Adler, Robert J.; Buchert, Thomas; Edelsbrunner, HerbertISTA ; Jones, Bernard J.T.; Schwartzman, Armin; Wagner, HubertISTA; Van De Weygaert, Rien
Department
Abstract
We study the topology generated by the temperature fluctuations of the cosmic microwave background (CMB) radiation, as quantified by the number of components and holes, formally given by the Betti numbers, in the growing excursion sets. We compare CMB maps observed by the Planck satellite with a thousand simulated maps generated according to the ΛCDM paradigm with Gaussian distributed fluctuations. The comparison is multi-scale, being performed on a sequence of degraded maps with mean pixel separation ranging from 0.05 to 7.33°. The survey of the CMB over 𝕊2 is incomplete due to obfuscation effects by bright point sources and other extended foreground objects like our own galaxy. To deal with such situations, where analysis in the presence of “masks” is of importance, we introduce the concept of relative homology. The parametric χ2-test shows differences between observations and simulations, yielding p-values at percent to less than permil levels roughly between 2 and 7°, with the difference in the number of components and holes peaking at more than 3σ sporadically at these scales. The highest observed deviation between the observations and simulations for b0 and b1 is approximately between 3σ and 4σ at scales of 3–7°. There are reports of mildly unusual behaviour of the Euler characteristic at 3.66° in the literature, computed from independent measurements of the CMB temperature fluctuations by Planck’s predecessor, the Wilkinson Microwave Anisotropy Probe (WMAP) satellite. The mildly anomalous behaviour of the Euler characteristic is phenomenologically related to the strongly anomalous behaviour of components and holes, or the zeroth and first Betti numbers, respectively. Further, since these topological descriptors show consistent anomalous behaviour over independent measurements of Planck and WMAP, instrumental and systematic errors may be an unlikely source. These are also the scales at which the observed maps exhibit low variance compared to the simulations, and approximately the range of scales at which the power spectrum exhibits a dip with respect to the theoretical model. Non-parametric tests show even stronger differences at almost all scales. Crucially, Gaussian simulations based on power-spectrum matching the characteristics of the observed dipped power spectrum are not able to resolve the anomaly. Understanding the origin of the anomalies in the CMB, whether cosmological in nature or arising due to late-time effects, is an extremely challenging task. Regardless, beyond the trivial possibility that this may still be a manifestation of an extreme Gaussian case, these observations, along with the super-horizon scales involved, may motivate the study of primordial non-Gaussianity. Alternative scenarios worth exploring may be models with non-trivial topology, including topological defect models.
Publishing Year
Date Published
2019-07-17
Journal Title
Astronomy and Astrophysics
Volume
627
Article Number
A163
ISSN
eISSN
IST-REx-ID

Cite this

Pranav P, Adler RJ, Buchert T, et al. Unexpected topology of the temperature fluctuations in the cosmic microwave background. Astronomy and Astrophysics. 2019;627. doi:10.1051/0004-6361/201834916
Pranav, P., Adler, R. J., Buchert, T., Edelsbrunner, H., Jones, B. J. T., Schwartzman, A., … Van De Weygaert, R. (2019). Unexpected topology of the temperature fluctuations in the cosmic microwave background. Astronomy and Astrophysics. EDP Sciences. https://doi.org/10.1051/0004-6361/201834916
Pranav, Pratyush, Robert J. Adler, Thomas Buchert, Herbert Edelsbrunner, Bernard J.T. Jones, Armin Schwartzman, Hubert Wagner, and Rien Van De Weygaert. “Unexpected Topology of the Temperature Fluctuations in the Cosmic Microwave Background.” Astronomy and Astrophysics. EDP Sciences, 2019. https://doi.org/10.1051/0004-6361/201834916.
P. Pranav et al., “Unexpected topology of the temperature fluctuations in the cosmic microwave background,” Astronomy and Astrophysics, vol. 627. EDP Sciences, 2019.
Pranav P, Adler RJ, Buchert T, Edelsbrunner H, Jones BJT, Schwartzman A, Wagner H, Van De Weygaert R. 2019. Unexpected topology of the temperature fluctuations in the cosmic microwave background. Astronomy and Astrophysics. 627, A163.
Pranav, Pratyush, et al. “Unexpected Topology of the Temperature Fluctuations in the Cosmic Microwave Background.” Astronomy and Astrophysics, vol. 627, A163, EDP Sciences, 2019, doi:10.1051/0004-6361/201834916.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2019-08-05
MD5 Checksum
83b9209ed9eefbdcefd89019c5a97805


Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Sources

arXiv 1812.07678

Search this title in

Google Scholar