Learning from dependent data
Zimin A. 2018. Learning from dependent data. Institute of Science and Technology Austria.
Download
Thesis
| PhD
| Published
| English
Author
Supervisor
Corresponding author has ISTA affiliation
Department
Series Title
ISTA Thesis
Abstract
The most common assumption made in statistical learning theory is the assumption of the independent and identically distributed (i.i.d.) data. While being very convenient mathematically, it is often very clearly violated in practice. This disparity between the machine learning theory and applications underlies a growing demand in the development of algorithms that learn from dependent data and theory that can provide generalization guarantees similar to the independent situations. This thesis is dedicated to two variants of dependencies that can arise in practice. One is a dependence on the level of samples in a single learning task. Another dependency type arises in the multi-task setting when the tasks are dependent on each other even though the data for them can be i.i.d. In both cases we model the data (samples or tasks) as stochastic processes and introduce new algorithms for both settings that take into account and exploit the resulting dependencies. We prove the theoretical guarantees on the performance of the introduced algorithms under different evaluation criteria and, in addition, we compliment the theoretical study by the empirical one, where we evaluate some of the algorithms on two real world datasets to highlight their practical applicability.
Publishing Year
Date Published
2018-09-01
Publisher
Institute of Science and Technology Austria
Page
92
ISSN
IST-REx-ID
Cite this
Zimin A. Learning from dependent data. 2018. doi:10.15479/AT:ISTA:TH1048
Zimin, A. (2018). Learning from dependent data. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:TH1048
Zimin, Alexander. “Learning from Dependent Data.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:TH1048.
A. Zimin, “Learning from dependent data,” Institute of Science and Technology Austria, 2018.
Zimin A. 2018. Learning from dependent data. Institute of Science and Technology Austria.
Zimin, Alexander. Learning from Dependent Data. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:TH1048.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Main File(s)
File Name
2018_Thesis_Zimin.pdf
1.04 MB
Access Level
Open Access
Date Uploaded
2019-04-09
MD5 Checksum
e849dd40a915e4d6c5572b51b517f098
Source File
File Name
2018_Thesis_Zimin_Source.zip
637.49 KB
Access Level
Closed Access
Date Uploaded
2019-04-09
MD5 Checksum
da092153cec55c97461bd53c45c5d139