Arakawa-Suzuki functors for Whittaker modules
Brown A. 2019. Arakawa-Suzuki functors for Whittaker modules. Journal of Algebra. 538, 261–289.
Download (ext.)
https://arxiv.org/abs/1805.04676
[Preprint]
Journal Article
| Published
| English
Author
Department
Abstract
In this paper we construct a family of exact functors from the category of Whittaker modules of the simple complex Lie algebra of type to the category of finite-dimensional modules of the graded affine Hecke algebra of type . Using results of Backelin [2] and of Arakawa-Suzuki [1], we prove that these functors map standard modules to standard modules (or zero) and simple modules to simple modules (or zero). Moreover, we show that each simple module of the graded affine Hecke algebra appears as the image of a simple Whittaker module. Since the Whittaker category contains the BGG category as a full subcategory, our results generalize results of Arakawa-Suzuki [1], which in turn generalize Schur-Weyl duality between finite-dimensional representations of and representations of the symmetric group .
Publishing Year
Date Published
2019-11-15
Journal Title
Journal of Algebra
Publisher
Elsevier
Volume
538
Page
261-289
ISSN
IST-REx-ID
Cite this
Brown A. Arakawa-Suzuki functors for Whittaker modules. Journal of Algebra. 2019;538:261-289. doi:10.1016/j.jalgebra.2019.07.027
Brown, A. (2019). Arakawa-Suzuki functors for Whittaker modules. Journal of Algebra. Elsevier. https://doi.org/10.1016/j.jalgebra.2019.07.027
Brown, Adam. “Arakawa-Suzuki Functors for Whittaker Modules.” Journal of Algebra. Elsevier, 2019. https://doi.org/10.1016/j.jalgebra.2019.07.027.
A. Brown, “Arakawa-Suzuki functors for Whittaker modules,” Journal of Algebra, vol. 538. Elsevier, pp. 261–289, 2019.
Brown A. 2019. Arakawa-Suzuki functors for Whittaker modules. Journal of Algebra. 538, 261–289.
Brown, Adam. “Arakawa-Suzuki Functors for Whittaker Modules.” Journal of Algebra, vol. 538, Elsevier, 2019, pp. 261–89, doi:10.1016/j.jalgebra.2019.07.027.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access
Export
Marked PublicationsOpen Data ISTA Research Explorer
Web of Science
View record in Web of Science®Sources
arXiv 1805.04676