A unifying theory of branching morphogenesis
Hannezo EB, Scheele C, Moad M, Drogo N, Heer R, Sampogna R, Van Rheenen J, Simons B. 2017. A unifying theory of branching morphogenesis. Cell. 171(1), 242–255.
Download
Journal Article
| Published
| English
Scopus indexed
Author
Hannezo, Edouard ISTA ;
Scheele, Colinda;
Moad, Mohammad;
Drogo, Nicholas;
Heer, Rakesh;
Sampogna, Rosemary;
Van Rheenen, Jacco;
Simons, Benjamin
Department
Abstract
The morphogenesis of branched organs remains a subject of abiding interest. Although much is known about the underlying signaling pathways, it remains unclear how macroscopic features of branched organs, including their size, network topology, and spatial patterning, are encoded. Here, we show that, in mouse mammary gland, kidney, and human prostate, these features can be explained quantitatively within a single unifying framework of branching and annihilating random walks. Based on quantitative analyses of large-scale organ reconstructions and proliferation kinetics measurements, we propose that morphogenesis follows from the proliferative activity of equipotent tips that stochastically branch and randomly explore their environment but compete neutrally for space, becoming proliferatively inactive when in proximity with neighboring ducts. These results show that complex branched epithelial structures develop as a self-organized process, reliant upon a strikingly simple but generic rule, without recourse to a rigid and deterministic sequence of genetically programmed events.
Publishing Year
Date Published
2017-09-21
Journal Title
Cell
Volume
171
Issue
1
Page
242 - 255
ISSN
IST-REx-ID
Cite this
Hannezo EB, Scheele C, Moad M, et al. A unifying theory of branching morphogenesis. Cell. 2017;171(1):242-255. doi:10.1016/j.cell.2017.08.026
Hannezo, E. B., Scheele, C., Moad, M., Drogo, N., Heer, R., Sampogna, R., … Simons, B. (2017). A unifying theory of branching morphogenesis. Cell. Cell Press. https://doi.org/10.1016/j.cell.2017.08.026
Hannezo, Edouard B, Colinda Scheele, Mohammad Moad, Nicholas Drogo, Rakesh Heer, Rosemary Sampogna, Jacco Van Rheenen, and Benjamin Simons. “A Unifying Theory of Branching Morphogenesis.” Cell. Cell Press, 2017. https://doi.org/10.1016/j.cell.2017.08.026.
E. B. Hannezo et al., “A unifying theory of branching morphogenesis,” Cell, vol. 171, no. 1. Cell Press, pp. 242–255, 2017.
Hannezo EB, Scheele C, Moad M, Drogo N, Heer R, Sampogna R, Van Rheenen J, Simons B. 2017. A unifying theory of branching morphogenesis. Cell. 171(1), 242–255.
Hannezo, Edouard B., et al. “A Unifying Theory of Branching Morphogenesis.” Cell, vol. 171, no. 1, Cell Press, 2017, pp. 242–55, doi:10.1016/j.cell.2017.08.026.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
Access Level
Open Access
Date Uploaded
2018-12-12
MD5 Checksum
7a036d93a9e2e597af9bb504d6133aca
Export
Marked PublicationsOpen Data ISTA Research Explorer