Mutual conservation of redox mediator and singlet oxygen quencher in Lithium–Oxygen batteries
Kwak W-J, Freunberger SA, Kim H, Park J, Nguyen TT, Jung H-G, Byon HR, Sun Y-K. 2019. Mutual conservation of redox mediator and singlet oxygen quencher in Lithium–Oxygen batteries. ACS Catalysis. 9(11), 9914–9922.
Download
Journal Article
| Published
| English
Author
Kwak, Won-Jin;
Freunberger, Stefan AlexanderISTA ;
Kim, Hun;
Park, Jiwon;
Nguyen, Trung Thien;
Jung, Hun-Gi;
Byon, Hye Ryung;
Sun, Yang-Kook
Abstract
Li–O2 batteries are plagued by side reactions that cause poor rechargeability and efficiency. These reactions were recently revealed to be predominantly caused by singlet oxygen, which can be neutralized by chemical traps or physical quenchers. However, traps are irreversibly consumed and thus only active for a limited time, and so far identified quenchers lack oxidative stability to be suitable for typically required recharge potentials. Thus, reducing the charge potential within the stability limit of the quencher and/or finding more stable quenchers is required. Here, we show that dimethylphenazine as a redox mediator decreases the charge potential well within the stability limit of the quencher 1,4-diazabicyclo[2.2.2]octane. The quencher can thus mitigate the parasitic reactions without being oxidatively decomposed. At the same time the quencher protects the redox mediator from singlet oxygen attack. The mutual conservation of the redox mediator and the quencher is rational for stable and effective Li–O2 batteries.
Publishing Year
Date Published
2019-11-01
Journal Title
ACS Catalysis
Publisher
ACS
Volume
9
Issue
11
Page
9914-9922
ISSN
IST-REx-ID
Cite this
Kwak W-J, Freunberger SA, Kim H, et al. Mutual conservation of redox mediator and singlet oxygen quencher in Lithium–Oxygen batteries. ACS Catalysis. 2019;9(11):9914-9922. doi:10.1021/acscatal.9b01337
Kwak, W.-J., Freunberger, S. A., Kim, H., Park, J., Nguyen, T. T., Jung, H.-G., … Sun, Y.-K. (2019). Mutual conservation of redox mediator and singlet oxygen quencher in Lithium–Oxygen batteries. ACS Catalysis. ACS. https://doi.org/10.1021/acscatal.9b01337
Kwak, Won-Jin, Stefan Alexander Freunberger, Hun Kim, Jiwon Park, Trung Thien Nguyen, Hun-Gi Jung, Hye Ryung Byon, and Yang-Kook Sun. “Mutual Conservation of Redox Mediator and Singlet Oxygen Quencher in Lithium–Oxygen Batteries.” ACS Catalysis. ACS, 2019. https://doi.org/10.1021/acscatal.9b01337.
W.-J. Kwak et al., “Mutual conservation of redox mediator and singlet oxygen quencher in Lithium–Oxygen batteries,” ACS Catalysis, vol. 9, no. 11. ACS, pp. 9914–9922, 2019.
Kwak W-J, Freunberger SA, Kim H, Park J, Nguyen TT, Jung H-G, Byon HR, Sun Y-K. 2019. Mutual conservation of redox mediator and singlet oxygen quencher in Lithium–Oxygen batteries. ACS Catalysis. 9(11), 9914–9922.
Kwak, Won-Jin, et al. “Mutual Conservation of Redox Mediator and Singlet Oxygen Quencher in Lithium–Oxygen Batteries.” ACS Catalysis, vol. 9, no. 11, ACS, 2019, pp. 9914–22, doi:10.1021/acscatal.9b01337.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Main File(s)
File Name
Revised Manuscript.pdf
1.20 MB
Access Level
Open Access
Date Uploaded
2020-06-29
MD5 Checksum
bbaebfe5ff0bcab6235821ba3460b7de