Long-chain Li and Na alkyl carbonates as solid electrolyte interphase components: Structure, ion transport, and mechanical properties

Schafzahl L, Ehmann H, Kriechbaum M, Sattelkow J, Ganner T, Plank H, Wilkening M, Freunberger SA. 2018. Long-chain Li and Na alkyl carbonates as solid electrolyte interphase components: Structure, ion transport, and mechanical properties. Chemistry of Materials. 30(10), 3338–3345.

Download
No fulltext has been uploaded. References only!

Journal Article | Published | English
Author
Schafzahl, Lukas; Ehmann, Heike; Kriechbaum, Manfred; Sattelkow, Jürgen; Ganner, Thomas; Plank, Harald; Wilkening, Martin; Freunberger, Stefan AlexanderISTA
Abstract
The solid electrolyte interphase (SEI) in Li and Na ion batteries forms when highly reducing or oxidizing electrode materials come into contact with a liquid organic electrolyte. Its ability to form a mechanically robust, ion-conducting, and electron-insulating layer critically determines performance, cycle life, and safety. Li or Na alkyl carbonates (LiAC and NaAC, respectively) are lead SEI components in state-of-the-art carbonate based electrolytes, and our fundamental understanding of their charge transport and mechanical properties may hold the key to designing electrolytes forming an improved SEI. We synthesized a homologous series of LiACs and NaACs from methyl to octyl analogues and characterized them with respect to structure, ionic conductivity, and stiffness. The compounds assume layered structures except for the lithium methyl carbonate. Room-temperature conductivities were found to be ∼10–9 S cm–1 for lithium methyl carbonate, <10–12 S cm–1 for the other LiACs, and <10–12 S cm–1 for the NaACs with ion transport mostly attributed to grain boundaries. While LiACs show stiffnesses of ∼1 GPa, NaACs become significantly softer with increasing chain lengths. These findings will help to more precisely interpret the complex results from charge transport and mechanical characterization of real SEIs and can give a rationale for influencing the SEI’s mechanical properties via the electrolyte.
Publishing Year
Date Published
2018-05-03
Journal Title
Chemistry of Materials
Volume
30
Issue
10
Page
3338-3345
ISSN
eISSN
IST-REx-ID

Cite this

Schafzahl L, Ehmann H, Kriechbaum M, et al. Long-chain Li and Na alkyl carbonates as solid electrolyte interphase components: Structure, ion transport, and mechanical properties. Chemistry of Materials. 2018;30(10):3338-3345. doi:10.1021/acs.chemmater.8b00750
Schafzahl, L., Ehmann, H., Kriechbaum, M., Sattelkow, J., Ganner, T., Plank, H., … Freunberger, S. A. (2018). Long-chain Li and Na alkyl carbonates as solid electrolyte interphase components: Structure, ion transport, and mechanical properties. Chemistry of Materials. ACS. https://doi.org/10.1021/acs.chemmater.8b00750
Schafzahl, Lukas, Heike Ehmann, Manfred Kriechbaum, Jürgen Sattelkow, Thomas Ganner, Harald Plank, Martin Wilkening, and Stefan Alexander Freunberger. “Long-Chain Li and Na Alkyl Carbonates as Solid Electrolyte Interphase Components: Structure, Ion Transport, and Mechanical Properties.” Chemistry of Materials. ACS, 2018. https://doi.org/10.1021/acs.chemmater.8b00750.
L. Schafzahl et al., “Long-chain Li and Na alkyl carbonates as solid electrolyte interphase components: Structure, ion transport, and mechanical properties,” Chemistry of Materials, vol. 30, no. 10. ACS, pp. 3338–3345, 2018.
Schafzahl L, Ehmann H, Kriechbaum M, Sattelkow J, Ganner T, Plank H, Wilkening M, Freunberger SA. 2018. Long-chain Li and Na alkyl carbonates as solid electrolyte interphase components: Structure, ion transport, and mechanical properties. Chemistry of Materials. 30(10), 3338–3345.
Schafzahl, Lukas, et al. “Long-Chain Li and Na Alkyl Carbonates as Solid Electrolyte Interphase Components: Structure, Ion Transport, and Mechanical Properties.” Chemistry of Materials, vol. 30, no. 10, ACS, 2018, pp. 3338–45, doi:10.1021/acs.chemmater.8b00750.

Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar