NetPyNE, a tool for data-driven multiscale modeling of brain circuits
Dura-Bernal S, Suter B, Gleeson P, Cantarelli M, Quintana A, Rodriguez F, Kedziora DJ, Chadderdon GL, Kerr CC, Neymotin SA, McDougal RA, Hines M, Shepherd GM, Lytton WW. 2019. NetPyNE, a tool for data-driven multiscale modeling of brain circuits. eLife. 8, e44494.
Download
Journal Article
| Published
| English
Scopus indexed
Author
Dura-Bernal, Salvador;
Suter, BenjaminISTA ;
Gleeson, Padraig;
Cantarelli, Matteo;
Quintana, Adrian;
Rodriguez, Facundo;
Kedziora, David J;
Chadderdon, George L;
Kerr, Cliff C;
Neymotin, Samuel A;
McDougal, Robert A;
Hines, Michael
All
All
Department
Abstract
Biophysical modeling of neuronal networks helps to integrate and interpret rapidly growing and disparate experimental datasets at multiple scales. The NetPyNE tool (www.netpyne.org) provides both programmatic and graphical interfaces to develop data-driven multiscale network models in NEURON. NetPyNE clearly separates model parameters from implementation code. Users provide specifications at a high level via a standardized declarative language, for example connectivity rules, to create millions of cell-to-cell connections. NetPyNE then enables users to generate the NEURON network, run efficiently parallelized simulations, optimize and explore network parameters through automated batch runs, and use built-in functions for visualization and analysis – connectivity matrices, voltage traces, spike raster plots, local field potentials, and information theoretic measures. NetPyNE also facilitates model sharing by exporting and importing standardized formats (NeuroML and SONATA). NetPyNE is already being used to teach computational neuroscience students and by modelers to investigate brain regions and phenomena.
Publishing Year
Date Published
2019-05-31
Journal Title
eLife
Publisher
eLife Sciences Publications
Volume
8
Article Number
e44494
ISSN
IST-REx-ID
Cite this
Dura-Bernal S, Suter B, Gleeson P, et al. NetPyNE, a tool for data-driven multiscale modeling of brain circuits. eLife. 2019;8. doi:10.7554/elife.44494
Dura-Bernal, S., Suter, B., Gleeson, P., Cantarelli, M., Quintana, A., Rodriguez, F., … Lytton, W. W. (2019). NetPyNE, a tool for data-driven multiscale modeling of brain circuits. ELife. eLife Sciences Publications. https://doi.org/10.7554/elife.44494
Dura-Bernal, Salvador, Benjamin Suter, Padraig Gleeson, Matteo Cantarelli, Adrian Quintana, Facundo Rodriguez, David J Kedziora, et al. “NetPyNE, a Tool for Data-Driven Multiscale Modeling of Brain Circuits.” ELife. eLife Sciences Publications, 2019. https://doi.org/10.7554/elife.44494.
S. Dura-Bernal et al., “NetPyNE, a tool for data-driven multiscale modeling of brain circuits,” eLife, vol. 8. eLife Sciences Publications, 2019.
Dura-Bernal S, Suter B, Gleeson P, Cantarelli M, Quintana A, Rodriguez F, Kedziora DJ, Chadderdon GL, Kerr CC, Neymotin SA, McDougal RA, Hines M, Shepherd GM, Lytton WW. 2019. NetPyNE, a tool for data-driven multiscale modeling of brain circuits. eLife. 8, e44494.
Dura-Bernal, Salvador, et al. “NetPyNE, a Tool for Data-Driven Multiscale Modeling of Brain Circuits.” ELife, vol. 8, e44494, eLife Sciences Publications, 2019, doi:10.7554/elife.44494.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
2019_eLife_DuraBernal.pdf
6.18 MB
Access Level
Open Access
Date Uploaded
2020-02-04
MD5 Checksum
7014189c11c10a12feeeae37f054871d
Export
Marked PublicationsOpen Data ISTA Research Explorer
Web of Science
View record in Web of Science®Sources
PMID: 31025934
PubMed | Europe PMC