Finite rank perturbations in products of coupled random matrices: From one correlated to two Wishart ensembles

Akemann G, Checinski T, Liu D, Strahov E. 2019. Finite rank perturbations in products of coupled random matrices: From one correlated to two Wishart ensembles. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques. 55(1), 441–479.

Download (ext.)

Journal Article | Published | English
Author
Akemann, Gernot; Checinski, Tomasz; Liu, DangzhengISTA; Strahov, Eugene
Department
Abstract
We compare finite rank perturbations of the following three ensembles of complex rectangular random matrices: First, a generalised Wishart ensemble with one random and two fixed correlation matrices introduced by Borodin and Péché, second, the product of two independent random matrices where one has correlated entries, and third, the case when the two random matrices become also coupled through a fixed matrix. The singular value statistics of all three ensembles is shown to be determinantal and we derive double contour integral representations for their respective kernels. Three different kernels are found in the limit of infinite matrix dimension at the origin of the spectrum. They depend on finite rank perturbations of the correlation and coupling matrices and are shown to be integrable. The first kernel (I) is found for two independent matrices from the second, and two weakly coupled matrices from the third ensemble. It generalises the Meijer G-kernel for two independent and uncorrelated matrices. The third kernel (III) is obtained for the generalised Wishart ensemble and for two strongly coupled matrices. It further generalises the perturbed Bessel kernel of Desrosiers and Forrester. Finally, kernel (II), found for the ensemble of two coupled matrices, provides an interpolation between the kernels (I) and (III), generalising previous findings of part of the authors.
Publishing Year
Date Published
2019-02-01
Journal Title
Annales de l'Institut Henri Poincaré, Probabilités et Statistiques
Publisher
Institute of Mathematical Statistics
Volume
55
Issue
1
Page
441-479
ISSN
IST-REx-ID

Cite this

Akemann G, Checinski T, Liu D, Strahov E. Finite rank perturbations in products of coupled random matrices: From one correlated to two Wishart ensembles. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques. 2019;55(1):441-479. doi:10.1214/18-aihp888
Akemann, G., Checinski, T., Liu, D., & Strahov, E. (2019). Finite rank perturbations in products of coupled random matrices: From one correlated to two Wishart ensembles. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques. Institute of Mathematical Statistics. https://doi.org/10.1214/18-aihp888
Akemann, Gernot, Tomasz Checinski, Dangzheng Liu, and Eugene Strahov. “Finite Rank Perturbations in Products of Coupled Random Matrices: From One Correlated to Two Wishart Ensembles.” Annales de l’Institut Henri Poincaré, Probabilités et Statistiques. Institute of Mathematical Statistics, 2019. https://doi.org/10.1214/18-aihp888.
G. Akemann, T. Checinski, D. Liu, and E. Strahov, “Finite rank perturbations in products of coupled random matrices: From one correlated to two Wishart ensembles,” Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, vol. 55, no. 1. Institute of Mathematical Statistics, pp. 441–479, 2019.
Akemann G, Checinski T, Liu D, Strahov E. 2019. Finite rank perturbations in products of coupled random matrices: From one correlated to two Wishart ensembles. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques. 55(1), 441–479.
Akemann, Gernot, et al. “Finite Rank Perturbations in Products of Coupled Random Matrices: From One Correlated to Two Wishart Ensembles.” Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, vol. 55, no. 1, Institute of Mathematical Statistics, 2019, pp. 441–79, doi:10.1214/18-aihp888.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Sources

arXiv 1704.05224

Search this title in

Google Scholar