Transition to turbulence in pulsating pipe flow

Xu D, Warnecke S, Song B, Ma X, Hof B. 2017. Transition to turbulence in pulsating pipe flow. Journal of Fluid Mechanics. 831, 418–432.

Download (ext.)
OA https://arxiv.org/abs/1709.03738 [Submitted Version]

Journal Article | Published | English

Scopus indexed
Author
Xu, DuoISTA; Warnecke, Sascha; Song, Baofang; Ma, XingyuISTA ; Hof, BjörnISTA

Corresponding author has ISTA affiliation

Department
Abstract
Fluid flows in nature and applications are frequently subject to periodic velocity modulations. Surprisingly, even for the generic case of flow through a straight pipe, there is little consensus regarding the influence of pulsation on the transition threshold to turbulence: while most studies predict a monotonically increasing threshold with pulsation frequency (i.e. Womersley number, ), others observe a decreasing threshold for identical parameters and only observe an increasing threshold at low . In the present study we apply recent advances in the understanding of transition in steady shear flows to pulsating pipe flow. For moderate pulsation amplitudes we find that the first instability encountered is subcritical (i.e. requiring finite amplitude disturbances) and gives rise to localized patches of turbulence ('puffs') analogous to steady pipe flow. By monitoring the impact of pulsation on the lifetime of turbulence we map the onset of turbulence in parameter space. Transition in pulsatile flow can be separated into three regimes. At small Womersley numbers the dynamics is dominated by the decay turbulence suffers during the slower part of the cycle and hence transition is delayed significantly. As shown in this regime thresholds closely agree with estimates based on a quasi-steady flow assumption only taking puff decay rates into account. The transition point predicted in the zero limit equals to the critical point for steady pipe flow offset by the oscillation Reynolds number (i.e. the dimensionless oscillation amplitude). In the high frequency limit on the other hand, puff lifetimes are identical to those in steady pipe flow and hence the transition threshold appears to be unaffected by flow pulsation. In the intermediate frequency regime the transition threshold sharply drops (with increasing ) from the decay dominated (quasi-steady) threshold to the steady pipe flow level.
Publishing Year
Date Published
2017-11-25
Journal Title
Journal of Fluid Mechanics
Publisher
Cambridge University Press
Volume
831
Page
418 - 432
ISSN
IST-REx-ID
745

Cite this

Xu D, Warnecke S, Song B, Ma X, Hof B. Transition to turbulence in pulsating pipe flow. Journal of Fluid Mechanics. 2017;831:418-432. doi:10.1017/jfm.2017.620
Xu, D., Warnecke, S., Song, B., Ma, X., & Hof, B. (2017). Transition to turbulence in pulsating pipe flow. Journal of Fluid Mechanics. Cambridge University Press. https://doi.org/10.1017/jfm.2017.620
Xu, Duo, Sascha Warnecke, Baofang Song, Xingyu Ma, and Björn Hof. “Transition to Turbulence in Pulsating Pipe Flow.” Journal of Fluid Mechanics. Cambridge University Press, 2017. https://doi.org/10.1017/jfm.2017.620.
D. Xu, S. Warnecke, B. Song, X. Ma, and B. Hof, “Transition to turbulence in pulsating pipe flow,” Journal of Fluid Mechanics, vol. 831. Cambridge University Press, pp. 418–432, 2017.
Xu D, Warnecke S, Song B, Ma X, Hof B. 2017. Transition to turbulence in pulsating pipe flow. Journal of Fluid Mechanics. 831, 418–432.
Xu, Duo, et al. “Transition to Turbulence in Pulsating Pipe Flow.” Journal of Fluid Mechanics, vol. 831, Cambridge University Press, 2017, pp. 418–32, doi:10.1017/jfm.2017.620.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Search this title in

Google Scholar