Nuclear translocation of glutaminase GLS2 in human cancer cells associates with proliferation arrest and differentiation
López De La Oliva AR, Campos-Sandoval JA, Gómez-García MC, Cardona C, Martín-Rufián M, Sialana FJ, Castilla L, Bae N, Lobo C, Peñalver A, García-Frutos M, Carro D, Enrique V, Paz JC, Mirmira RG, Gutiérrez A, Alonso FJ, Segura JA, Matés JM, Lubec G, Márquez J. 2020. Nuclear translocation of glutaminase GLS2 in human cancer cells associates with proliferation arrest and differentiation. Scientific reports. 10(1), 2259.
Download
Journal Article
| Published
| English
Scopus indexed
Author
López De La Oliva, Amada R.;
Campos-Sandoval, José A.;
Gómez-García, María C.;
Cardona, Carolina;
Martín-Rufián, Mercedes;
Sialana, Fernando J.;
Castilla, Laura;
Bae, NarkhyunISTA;
Lobo, Carolina;
Peñalver, Ana;
García-Frutos, Marina;
Carro, David
All
All
Department
Abstract
Glutaminase (GA) catalyzes the first step in mitochondrial glutaminolysis playing a key role in cancer metabolic reprogramming. Humans express two types of GA isoforms: GLS and GLS2. GLS isozymes have been consistently related to cell proliferation, but the role of GLS2 in cancer remains poorly understood. GLS2 is repressed in many tumor cells and a better understanding of its function in tumorigenesis may further the development of new therapeutic approaches. We analyzed GLS2 expression in HCC, GBM and neuroblastoma cells, as well as in monkey COS-7 cells. We studied GLS2 expression after induction of differentiation with phorbol ester (PMA) and transduction with the full-length cDNA of GLS2. In parallel, we investigated cell cycle progression and levels of p53, p21 and c-Myc proteins. Using the baculovirus system, human GLS2 protein was overexpressed, purified and analyzed for posttranslational modifications employing a proteomics LC-MS/MS platform. We have demonstrated a dual targeting of GLS2 in human cancer cells. Immunocytochemistry and subcellular fractionation gave consistent results demonstrating nuclear and mitochondrial locations, with the latter being predominant. Nuclear targeting was confirmed in cancer cells overexpressing c-Myc- and GFP-tagged GLS2 proteins. We assessed the subnuclear location finding a widespread distribution of GLS2 in the nucleoplasm without clear overlapping with specific nuclear substructures. GLS2 expression and nuclear accrual notably increased by treatment of SH-SY5Y cells with PMA and it correlated with cell cycle arrest at G2/M, upregulation of tumor suppressor p53 and p21 protein. A similar response was obtained by overexpression of GLS2 in T98G glioma cells, including downregulation of oncogene c-Myc. Furthermore, human GLS2 was identified as being hypusinated by MS analysis, a posttranslational modification which may be relevant for its nuclear targeting and/or function. Our studies provide evidence for a tumor suppressor role of GLS2 in certain types of cancer. The data imply that GLS2 can be regarded as a highly mobile and multilocalizing protein translocated to both mitochondria and nuclei. Upregulation of GLS2 in cancer cells induced an antiproliferative response with cell cycle arrest at the G2/M phase.
Publishing Year
Date Published
2020-02-10
Journal Title
Scientific reports
Publisher
Springer Nature
Volume
10
Issue
1
Article Number
2259
eISSN
IST-REx-ID
Cite this
López De La Oliva AR, Campos-Sandoval JA, Gómez-García MC, et al. Nuclear translocation of glutaminase GLS2 in human cancer cells associates with proliferation arrest and differentiation. Scientific reports. 2020;10(1). doi:10.1038/s41598-020-58264-4
López De La Oliva, A. R., Campos-Sandoval, J. A., Gómez-García, M. C., Cardona, C., Martín-Rufián, M., Sialana, F. J., … Márquez, J. (2020). Nuclear translocation of glutaminase GLS2 in human cancer cells associates with proliferation arrest and differentiation. Scientific Reports. Springer Nature. https://doi.org/10.1038/s41598-020-58264-4
López De La Oliva, Amada R., José A. Campos-Sandoval, María C. Gómez-García, Carolina Cardona, Mercedes Martín-Rufián, Fernando J. Sialana, Laura Castilla, et al. “Nuclear Translocation of Glutaminase GLS2 in Human Cancer Cells Associates with Proliferation Arrest and Differentiation.” Scientific Reports. Springer Nature, 2020. https://doi.org/10.1038/s41598-020-58264-4.
A. R. López De La Oliva et al., “Nuclear translocation of glutaminase GLS2 in human cancer cells associates with proliferation arrest and differentiation,” Scientific reports, vol. 10, no. 1. Springer Nature, 2020.
López De La Oliva AR, Campos-Sandoval JA, Gómez-García MC, Cardona C, Martín-Rufián M, Sialana FJ, Castilla L, Bae N, Lobo C, Peñalver A, García-Frutos M, Carro D, Enrique V, Paz JC, Mirmira RG, Gutiérrez A, Alonso FJ, Segura JA, Matés JM, Lubec G, Márquez J. 2020. Nuclear translocation of glutaminase GLS2 in human cancer cells associates with proliferation arrest and differentiation. Scientific reports. 10(1), 2259.
López De La Oliva, Amada R., et al. “Nuclear Translocation of Glutaminase GLS2 in Human Cancer Cells Associates with Proliferation Arrest and Differentiation.” Scientific Reports, vol. 10, no. 1, 2259, Springer Nature, 2020, doi:10.1038/s41598-020-58264-4.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
2020_ScientificReport_Lopez.pdf
4.70 MB
Access Level
Open Access
Date Uploaded
2020-02-18
MD5 Checksum
c780bd87476a9c9e12668ff66de3dc96
Export
Marked PublicationsOpen Data ISTA Research Explorer
Web of Science
View record in Web of Science®Sources
PMID: 32042057
PubMed | Europe PMC