Weighted Poisson–Delaunay mosaics
Edelsbrunner H, Nikitenko A. 2020. Weighted Poisson–Delaunay mosaics. Theory of Probability and its Applications. 64(4), 595–614.
Download (ext.)
https://arxiv.org/abs/1705.08735
[Preprint]
Journal Article
| Published
| English
Scopus indexed
Department
Abstract
Slicing a Voronoi tessellation in ${R}^n$ with a $k$-plane gives a $k$-dimensional weighted Voronoi tessellation, also known as a power diagram or Laguerre tessellation. Mapping every simplex of the dual weighted Delaunay mosaic to the radius of the smallest empty circumscribed sphere whose center lies in the $k$-plane gives a generalized discrete Morse function. Assuming the Voronoi tessellation is generated by a Poisson point process in ${R}^n$, we study the expected number of simplices in the $k$-dimensional weighted Delaunay mosaic as well as the expected number of intervals of the Morse function, both as functions of a radius threshold. As a by-product, we obtain a new proof for the expected number of connected components (clumps) in a line section of a circular Boolean model in ${R}^n$.
Publishing Year
Date Published
2020-02-13
Journal Title
Theory of Probability and its Applications
Publisher
SIAM
Volume
64
Issue
4
Page
595-614
ISSN
eISSN
IST-REx-ID
Cite this
Edelsbrunner H, Nikitenko A. Weighted Poisson–Delaunay mosaics. Theory of Probability and its Applications. 2020;64(4):595-614. doi:10.1137/S0040585X97T989726
Edelsbrunner, H., & Nikitenko, A. (2020). Weighted Poisson–Delaunay mosaics. Theory of Probability and Its Applications. SIAM. https://doi.org/10.1137/S0040585X97T989726
Edelsbrunner, Herbert, and Anton Nikitenko. “Weighted Poisson–Delaunay Mosaics.” Theory of Probability and Its Applications. SIAM, 2020. https://doi.org/10.1137/S0040585X97T989726.
H. Edelsbrunner and A. Nikitenko, “Weighted Poisson–Delaunay mosaics,” Theory of Probability and its Applications, vol. 64, no. 4. SIAM, pp. 595–614, 2020.
Edelsbrunner H, Nikitenko A. 2020. Weighted Poisson–Delaunay mosaics. Theory of Probability and its Applications. 64(4), 595–614.
Edelsbrunner, Herbert, and Anton Nikitenko. “Weighted Poisson–Delaunay Mosaics.” Theory of Probability and Its Applications, vol. 64, no. 4, SIAM, 2020, pp. 595–614, doi:10.1137/S0040585X97T989726.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access
Export
Marked PublicationsOpen Data ISTA Research Explorer
Web of Science
View record in Web of Science®Sources
arXiv 1705.08735