Homogenisation of one-dimensional discrete optimal transport
Gladbach P, Kopfer E, Maas J, Portinale L. 2020. Homogenisation of one-dimensional discrete optimal transport. Journal de Mathematiques Pures et Appliquees. 139(7), 204–234.
Download (ext.)
https://arxiv.org/abs/1905.05757
[Preprint]
Journal Article
| Published
| English
Scopus indexed
Author
Department
Grant
Abstract
This paper deals with dynamical optimal transport metrics defined by spatial discretisation of the Benamou–Benamou formula for the Kantorovich metric . Such metrics appear naturally in discretisations of -gradient flow formulations for dissipative PDE. However, it has recently been shown that these metrics do not in general converge to , unless strong geometric constraints are imposed on the discrete mesh. In this paper we prove that, in a 1-dimensional periodic setting, discrete transport metrics converge to a limiting transport metric with a non-trivial effective mobility. This mobility depends sensitively on the geometry of the mesh and on the non-local mobility at the discrete level. Our result quantifies to what extent discrete transport can make use of microstructure in the mesh to reduce the cost of transport.
Publishing Year
Date Published
2020-07-01
Journal Title
Journal de Mathematiques Pures et Appliquees
Publisher
Elsevier
Acknowledgement
J.M. gratefully acknowledges support by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 716117). J.M. and L.P. also acknowledge support from the Austrian Science Fund (FWF), grants No F65 and W1245. E.K. gratefully acknowledges support by the German Research Foundation through the Hausdorff Center for Mathematics and the Collaborative Research Center 1060. P.G. is partially funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 350398276.
Volume
139
Issue
7
Page
204-234
ISSN
IST-REx-ID
Cite this
Gladbach P, Kopfer E, Maas J, Portinale L. Homogenisation of one-dimensional discrete optimal transport. Journal de Mathematiques Pures et Appliquees. 2020;139(7):204-234. doi:10.1016/j.matpur.2020.02.008
Gladbach, P., Kopfer, E., Maas, J., & Portinale, L. (2020). Homogenisation of one-dimensional discrete optimal transport. Journal de Mathematiques Pures et Appliquees. Elsevier. https://doi.org/10.1016/j.matpur.2020.02.008
Gladbach, Peter, Eva Kopfer, Jan Maas, and Lorenzo Portinale. “Homogenisation of One-Dimensional Discrete Optimal Transport.” Journal de Mathematiques Pures et Appliquees. Elsevier, 2020. https://doi.org/10.1016/j.matpur.2020.02.008.
P. Gladbach, E. Kopfer, J. Maas, and L. Portinale, “Homogenisation of one-dimensional discrete optimal transport,” Journal de Mathematiques Pures et Appliquees, vol. 139, no. 7. Elsevier, pp. 204–234, 2020.
Gladbach P, Kopfer E, Maas J, Portinale L. 2020. Homogenisation of one-dimensional discrete optimal transport. Journal de Mathematiques Pures et Appliquees. 139(7), 204–234.
Gladbach, Peter, et al. “Homogenisation of One-Dimensional Discrete Optimal Transport.” Journal de Mathematiques Pures et Appliquees, vol. 139, no. 7, Elsevier, 2020, pp. 204–34, doi:10.1016/j.matpur.2020.02.008.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access
Material in ISTA:
Dissertation containing ISTA record
Export
Marked PublicationsOpen Data ISTA Research Explorer
Web of Science
View record in Web of Science®Sources
arXiv 1905.05757