Self-assembly-based posttranslational protein oscillators

Kimchi O, Goodrich CP, Courbet A, Curatolo AI, Woodall NB, Baker D, Brenner MP. 2020. Self-assembly-based posttranslational protein oscillators. Science Advances. 6(51), eabc1939.

Download
OA 2020_ScienceAdv_Kimchi.pdf 1.26 MB

Journal Article | Published | English
Author
Kimchi, Ofer; Goodrich, Carl PeterISTA ; Courbet, Alexis; Curatolo, Agnese I.; Woodall, Nicholas B.; Baker, David; Brenner, Michael P.
Abstract
Recent advances in synthetic posttranslational protein circuits are substantially impacting the landscape of cellular engineering and offer several advantages compared to traditional gene circuits. However, engineering dynamic phenomena such as oscillations in protein-level circuits remains an outstanding challenge. Few examples of biological posttranslational oscillators are known, necessitating theoretical progress to determine realizable oscillators. We construct mathematical models for two posttranslational oscillators, using few components that interact only through reversible binding and phosphorylation/dephosphorylation reactions. Our designed oscillators rely on the self-assembly of two protein species into multimeric functional enzymes that respectively inhibit and enhance this self-assembly. We limit our analysis to within experimental constraints, finding (i) significant portions of the restricted parameter space yielding oscillations and (ii) that oscillation periods can be tuned by several orders of magnitude using recent advances in computational protein design. Our work paves the way for the rational design and realization of protein-based dynamic systems.
Publishing Year
Date Published
2020-12-16
Journal Title
Science Advances
Volume
6
Issue
51
Article Number
eabc1939
IST-REx-ID

Cite this

Kimchi O, Goodrich CP, Courbet A, et al. Self-assembly-based posttranslational protein oscillators. Science Advances. 2020;6(51). doi:10.1126/sciadv.abc1939
Kimchi, O., Goodrich, C. P., Courbet, A., Curatolo, A. I., Woodall, N. B., Baker, D., & Brenner, M. P. (2020). Self-assembly-based posttranslational protein oscillators. Science Advances. https://doi.org/10.1126/sciadv.abc1939
Kimchi, Ofer, Carl Peter Goodrich, Alexis Courbet, Agnese I. Curatolo, Nicholas B. Woodall, David Baker, and Michael P. Brenner. “Self-Assembly-Based Posttranslational Protein Oscillators.” Science Advances, 2020. https://doi.org/10.1126/sciadv.abc1939.
O. Kimchi et al., “Self-assembly-based posttranslational protein oscillators,” Science Advances, vol. 6, no. 51. 2020.
Kimchi O, Goodrich CP, Courbet A, Curatolo AI, Woodall NB, Baker D, Brenner MP. 2020. Self-assembly-based posttranslational protein oscillators. Science Advances. 6(51), eabc1939.
Kimchi, Ofer, et al. “Self-Assembly-Based Posttranslational Protein Oscillators.” Science Advances, vol. 6, no. 51, eabc1939, 2020, doi:10.1126/sciadv.abc1939.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2021-04-12
MD5 Checksum
eb6d950b6a68ddc4a2fb31ec80a2a1bd


Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar