Plants with genetically encoded autoluminescence
Mitiouchkina T, Mishin AS, Gonzalez Somermeyer L, Markina NM, Chepurnyh TV, Guglya EB, Karataeva TA, Palkina KA, Shakhova ES, Fakhranurova LI, Chekova SV, Tsarkova AS, Golubev YV, Negrebetsky VV, Dolgushin SA, Shalaev PV, Shlykov D, Melnik OA, Shipunova VO, Deyev SM, Bubyrev AI, Pushin AS, Choob VV, Dolgov SV, Kondrashov F, Yampolsky IV, Sarkisyan KS. 2020. Plants with genetically encoded autoluminescence. Nature Biotechnology. 38, 944–946.
Download
Journal Article
| Published
| English
Scopus indexed
Author
Mitiouchkina, Tatiana;
Mishin, Alexander S.;
Gonzalez Somermeyer, LouisaISTA ;
Markina, Nadezhda M.;
Chepurnyh, Tatiana V.;
Guglya, Elena B.;
Karataeva, Tatiana A.;
Palkina, Kseniia A.;
Shakhova, Ekaterina S.;
Fakhranurova, Liliia I.;
Chekova, Sofia V.;
Tsarkova, Aleksandra S.
All
All
Department
Abstract
Autoluminescent plants engineered to express a bacterial bioluminescence gene cluster in plastids have not been widely adopted because of low light output. We engineered tobacco plants with a fungal bioluminescence system that converts caffeic acid (present in all plants) into luciferin and report self-sustained luminescence that is visible to the naked eye. Our findings could underpin development of a suite of imaging tools for plants.
Publishing Year
Date Published
2020-04-27
Journal Title
Nature Biotechnology
Publisher
Springer Nature
Acknowledgement
This study was designed, performed and funded by Planta LLC. We thank K. Wood for assisting in manuscript development. Planta acknowledges support from the Skolkovo Innovation Centre. We thank D. Bolotin and the Milaboratory (milaboratory.com) for access to computing and storage infrastructure. We thank S. Shakhov for providing
photography equipment. The Synthetic Biology Group is funded by the MRC London Institute of Medical Sciences (UKRI MC-A658-5QEA0, K.S.S.). K.S.S. is supported by an Imperial College Research Fellowship. Experiments were partially carried out using equipment provided by the Institute of Bioorganic Chemistry of the Russian Academy
of Sciences Сore Facility (CKP IBCH; supported by the Russian Ministry of Education and Science Grant RFMEFI62117X0018). The F.A.K. lab is supported by ERC grant agreement 771209—CharFL. This project received funding from the European Union’s Horizon 2020 Research and Innovation Programme under Marie Skłodowska-Curie
Grant Agreement 665385. K.S.S. acknowledges support by President’s Grant 075-15-2019-411. Design and assembly of some of the plasmids was supported by Russian Science Foundation grant 19-74-10102. Imaging experiments were partially supported by Russian Science Foundation grant 17-14-01169p. LC-MS/MS analyses of extracts were
supported by Russian Science Foundation grant 16-14-00052p. Design and assembly of plasmids was partially supported by grant 075-15-2019-1789 from the Ministry of Science and Higher Education of the Russian Federation allocated to the Center for Precision Genome Editing and Genetic Technologies for Biomedicine. The authors
would like to acknowledge the work of Genomics Core Facility of the Skolkovo Institute of Science and Technology, which performed the sequencing and bioinformatic analysis.
Volume
38
Page
944-946
ISSN
eISSN
IST-REx-ID
Cite this
Mitiouchkina T, Mishin AS, Gonzalez Somermeyer L, et al. Plants with genetically encoded autoluminescence. Nature Biotechnology. 2020;38:944-946. doi:10.1038/s41587-020-0500-9
Mitiouchkina, T., Mishin, A. S., Gonzalez Somermeyer, L., Markina, N. M., Chepurnyh, T. V., Guglya, E. B., … Sarkisyan, K. S. (2020). Plants with genetically encoded autoluminescence. Nature Biotechnology. Springer Nature. https://doi.org/10.1038/s41587-020-0500-9
Mitiouchkina, Tatiana, Alexander S. Mishin, Louisa Gonzalez Somermeyer, Nadezhda M. Markina, Tatiana V. Chepurnyh, Elena B. Guglya, Tatiana A. Karataeva, et al. “Plants with Genetically Encoded Autoluminescence.” Nature Biotechnology. Springer Nature, 2020. https://doi.org/10.1038/s41587-020-0500-9.
T. Mitiouchkina et al., “Plants with genetically encoded autoluminescence,” Nature Biotechnology, vol. 38. Springer Nature, pp. 944–946, 2020.
Mitiouchkina T, Mishin AS, Gonzalez Somermeyer L, Markina NM, Chepurnyh TV, Guglya EB, Karataeva TA, Palkina KA, Shakhova ES, Fakhranurova LI, Chekova SV, Tsarkova AS, Golubev YV, Negrebetsky VV, Dolgushin SA, Shalaev PV, Shlykov D, Melnik OA, Shipunova VO, Deyev SM, Bubyrev AI, Pushin AS, Choob VV, Dolgov SV, Kondrashov F, Yampolsky IV, Sarkisyan KS. 2020. Plants with genetically encoded autoluminescence. Nature Biotechnology. 38, 944–946.
Mitiouchkina, Tatiana, et al. “Plants with Genetically Encoded Autoluminescence.” Nature Biotechnology, vol. 38, Springer Nature, 2020, pp. 944–46, doi:10.1038/s41587-020-0500-9.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Main File(s)
File Name
Access Level
Open Access
Date Uploaded
2020-08-28
Embargo End Date
2021-03-01
MD5 Checksum
1b30467500ec6277229a875b06e196d0
Export
Marked PublicationsOpen Data ISTA Research Explorer
Web of Science
View record in Web of Science®Sources
PMID: 32341562
PubMed | Europe PMC