Barycentric cuts through a convex body
Patakova Z, Tancer M, Wagner U. 2020. Barycentric cuts through a convex body. 36th International Symposium on Computational Geometry. SoCG: Symposium on Computational Geometry, LIPIcs, vol. 164, 62:1-62:16.
Download
Conference Paper
| Published
| English
Scopus indexed
Corresponding author has ISTA affiliation
Department
Series Title
LIPIcs
Abstract
Let K be a convex body in ℝⁿ (i.e., a compact convex set with nonempty interior). Given a point p in the interior of K, a hyperplane h passing through p is called barycentric if p is the barycenter of K ∩ h. In 1961, Grünbaum raised the question whether, for every K, there exists an interior point p through which there are at least n+1 distinct barycentric hyperplanes. Two years later, this was seemingly resolved affirmatively by showing that this is the case if p=p₀ is the point of maximal depth in K. However, while working on a related question, we noticed that one of the auxiliary claims in the proof is incorrect. Here, we provide a counterexample; this re-opens Grünbaum’s question. It follows from known results that for n ≥ 2, there are always at least three distinct barycentric cuts through the point p₀ ∈ K of maximal depth. Using tools related to Morse theory we are able to improve this bound: four distinct barycentric cuts through p₀ are guaranteed if n ≥ 3.
Publishing Year
Date Published
2020-06-01
Proceedings Title
36th International Symposium on Computational Geometry
Publisher
Schloss Dagstuhl - Leibniz-Zentrum für Informatik
Volume
164
Article Number
62:1 - 62:16
Conference
SoCG: Symposium on Computational Geometry
Conference Location
Zürich, Switzerland
Conference Date
2020-06-22 – 2020-06-26
ISBN
ISSN
IST-REx-ID
Cite this
Patakova Z, Tancer M, Wagner U. Barycentric cuts through a convex body. In: 36th International Symposium on Computational Geometry. Vol 164. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.SoCG.2020.62
Patakova, Z., Tancer, M., & Wagner, U. (2020). Barycentric cuts through a convex body. In 36th International Symposium on Computational Geometry (Vol. 164). Zürich, Switzerland: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2020.62
Patakova, Zuzana, Martin Tancer, and Uli Wagner. “Barycentric Cuts through a Convex Body.” In 36th International Symposium on Computational Geometry, Vol. 164. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.SoCG.2020.62.
Z. Patakova, M. Tancer, and U. Wagner, “Barycentric cuts through a convex body,” in 36th International Symposium on Computational Geometry, Zürich, Switzerland, 2020, vol. 164.
Patakova Z, Tancer M, Wagner U. 2020. Barycentric cuts through a convex body. 36th International Symposium on Computational Geometry. SoCG: Symposium on Computational Geometry, LIPIcs, vol. 164, 62:1-62:16.
Patakova, Zuzana, et al. “Barycentric Cuts through a Convex Body.” 36th International Symposium on Computational Geometry, vol. 164, 62:1-62:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.SoCG.2020.62.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
2020_LIPIcsSoCG_Patakova.pdf
750.32 KB
Access Level
Open Access
Date Uploaded
2020-06-23
MD5 Checksum
ce1c9194139a664fb59d1efdfc88eaae
Export
Marked PublicationsOpen Data ISTA Research Explorer
Sources
arXiv 2003.13536