Stabilizing two-dimensional quantum scars by deformation and synchronization

Michailidis A, Turner CJ, Papić Z, Abanin DA, Serbyn M. 2020. Stabilizing two-dimensional quantum scars by deformation and synchronization. Physical Review Research. 2(2), 022065.

Download
OA 2020_PhysicalReviewResearch_Michailidis.pdf 2.07 MB [Published Version]

Journal Article | Published | English

Scopus indexed
Author
Michailidis, AlexiosISTA ; Turner, C. J.; Papić, Z.; Abanin, D. A.; Serbyn, MaksymISTA
Department
Abstract
Relaxation to a thermal state is the inevitable fate of nonequilibrium interacting quantum systems without special conservation laws. While thermalization in one-dimensional systems can often be suppressed by integrability mechanisms, in two spatial dimensions thermalization is expected to be far more effective due to the increased phase space. In this work we propose a general framework for escaping or delaying the emergence of the thermal state in two-dimensional arrays of Rydberg atoms via the mechanism of quantum scars, i.e., initial states that fail to thermalize. The suppression of thermalization is achieved in two complementary ways: by adding local perturbations or by adjusting the driving Rabi frequency according to the local connectivity of the lattice. We demonstrate that these mechanisms allow us to realize robust quantum scars in various two-dimensional lattices, including decorated lattices with nonconstant connectivity. In particular, we show that a small decrease of the Rabi frequency at the corners of the lattice is crucial for mitigating the strong boundary effects in two-dimensional systems. Our results identify synchronization as an important tool for future experiments on two-dimensional quantum scars.
Publishing Year
Date Published
2020-06-22
Journal Title
Physical Review Research
Publisher
American Physical Society
Volume
2
Issue
2
Article Number
022065
ISSN
IST-REx-ID

Cite this

Michailidis A, Turner CJ, Papić Z, Abanin DA, Serbyn M. Stabilizing two-dimensional quantum scars by deformation and synchronization. Physical Review Research. 2020;2(2). doi:10.1103/physrevresearch.2.022065
Michailidis, A., Turner, C. J., Papić, Z., Abanin, D. A., & Serbyn, M. (2020). Stabilizing two-dimensional quantum scars by deformation and synchronization. Physical Review Research. American Physical Society. https://doi.org/10.1103/physrevresearch.2.022065
Michailidis, Alexios, C. J. Turner, Z. Papić, D. A. Abanin, and Maksym Serbyn. “Stabilizing Two-Dimensional Quantum Scars by Deformation and Synchronization.” Physical Review Research. American Physical Society, 2020. https://doi.org/10.1103/physrevresearch.2.022065.
A. Michailidis, C. J. Turner, Z. Papić, D. A. Abanin, and M. Serbyn, “Stabilizing two-dimensional quantum scars by deformation and synchronization,” Physical Review Research, vol. 2, no. 2. American Physical Society, 2020.
Michailidis A, Turner CJ, Papić Z, Abanin DA, Serbyn M. 2020. Stabilizing two-dimensional quantum scars by deformation and synchronization. Physical Review Research. 2(2), 022065.
Michailidis, Alexios, et al. “Stabilizing Two-Dimensional Quantum Scars by Deformation and Synchronization.” Physical Review Research, vol. 2, no. 2, 022065, American Physical Society, 2020, doi:10.1103/physrevresearch.2.022065.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2020-06-29
MD5 Checksum
e6959dc8220f14a008d1933858795e6d


Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar