Leveraging 2D data to learn textured 3D mesh generation
Henderson PM, Tsiminaki V, Lampert C. 2020. Leveraging 2D data to learn textured 3D mesh generation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR: Conference on Computer Vision and Pattern Recognition, 7498–7507.
Download
Download (ext.)
Conference Paper
| Published
| English
Scopus indexed
Author
Department
Abstract
Numerous methods have been proposed for probabilistic generative modelling of
3D objects. However, none of these is able to produce textured objects, which
renders them of limited use for practical tasks. In this work, we present the
first generative model of textured 3D meshes. Training such a model would
traditionally require a large dataset of textured meshes, but unfortunately,
existing datasets of meshes lack detailed textures. We instead propose a new
training methodology that allows learning from collections of 2D images without
any 3D information. To do so, we train our model to explain a distribution of
images by modelling each image as a 3D foreground object placed in front of a
2D background. Thus, it learns to generate meshes that when rendered, produce
images similar to those in its training set.
A well-known problem when generating meshes with deep networks is the
emergence of self-intersections, which are problematic for many use-cases. As a
second contribution we therefore introduce a new generation process for 3D
meshes that guarantees no self-intersections arise, based on the physical
intuition that faces should push one another out of the way as they move.
We conduct extensive experiments on our approach, reporting quantitative and
qualitative results on both synthetic data and natural images. These show our
method successfully learns to generate plausible and diverse textured 3D
samples for five challenging object classes.
Publishing Year
Date Published
2020-07-01
Proceedings Title
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Publisher
IEEE
Page
7498-7507
Conference
CVPR: Conference on Computer Vision and Pattern Recognition
Conference Location
Virtual
Conference Date
2020-06-14 – 2020-06-19
eISSN
IST-REx-ID
Cite this
Henderson PM, Tsiminaki V, Lampert C. Leveraging 2D data to learn textured 3D mesh generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE; 2020:7498-7507. doi:10.1109/CVPR42600.2020.00752
Henderson, P. M., Tsiminaki, V., & Lampert, C. (2020). Leveraging 2D data to learn textured 3D mesh generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 7498–7507). Virtual: IEEE. https://doi.org/10.1109/CVPR42600.2020.00752
Henderson, Paul M, Vagia Tsiminaki, and Christoph Lampert. “Leveraging 2D Data to Learn Textured 3D Mesh Generation.” In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 7498–7507. IEEE, 2020. https://doi.org/10.1109/CVPR42600.2020.00752.
P. M. Henderson, V. Tsiminaki, and C. Lampert, “Leveraging 2D data to learn textured 3D mesh generation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual, 2020, pp. 7498–7507.
Henderson PM, Tsiminaki V, Lampert C. 2020. Leveraging 2D data to learn textured 3D mesh generation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR: Conference on Computer Vision and Pattern Recognition, 7498–7507.
Henderson, Paul M., et al. “Leveraging 2D Data to Learn Textured 3D Mesh Generation.” Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2020, pp. 7498–507, doi:10.1109/CVPR42600.2020.00752.
Export
Marked PublicationsOpen Data ISTA Research Explorer
Sources
arXiv 2004.04180