Salicylic acid regulates PIN2 auxin transporter hyper-clustering and root gravitropic growth via Remorin-dependent lipid nanodomain organization in Arabidopsis thaliana

Ke M, Ma Z, Wang D, Sun Y, Wen C, Huang D, Chen Z, Yang L, Tan S, Li R, Friml J, Miao Y, Chen X. 2021. Salicylic acid regulates PIN2 auxin transporter hyper-clustering and root gravitropic growth via Remorin-dependent lipid nanodomain organization in Arabidopsis thaliana. New Phytologist. 229(2), 963–978.

Download
OA 2021_NewPhytologist_Ke.pdf 3.67 MB [Published Version]

Journal Article | Published | English

Scopus indexed
Author
Ke, M; Ma, Z; Wang, D; Sun, Y; Wen, C; Huang, D; Chen, Z; Yang, L; Tan, ShutangISTA ; Li, R; Friml, JiríISTA ; Miao, Y
All
Department
Abstract
To adapt to the diverse array of biotic and abiotic cues, plants have evolved sophisticated mechanisms to sense changes in environmental conditions and modulate their growth. Growth-promoting hormones and defence signalling fine tune plant development antagonistically. During host-pathogen interactions, this defence-growth trade-off is mediated by the counteractive effects of the defence hormone salicylic acid (SA) and the growth hormone auxin. Here we revealed an underlying mechanism of SA regulating auxin signalling by constraining the plasma membrane dynamics of PIN2 auxin efflux transporter in Arabidopsis thaliana roots. The lateral diffusion of PIN2 proteins is constrained by SA signalling, during which PIN2 proteins are condensed into hyperclusters depending on REM1.2-mediated nanodomain compartmentalisation. Furthermore, membrane nanodomain compartmentalisation by SA or Remorin (REM) assembly significantly suppressed clathrin-mediated endocytosis. Consequently, SA-induced heterogeneous surface condensation disrupted asymmetric auxin distribution and the resultant gravitropic response. Our results demonstrated a defence-growth trade-off mechanism by which SA signalling crosstalked with auxin transport by concentrating membrane-resident PIN2 into heterogeneous compartments.
Publishing Year
Date Published
2021-01-01
Journal Title
New Phytologist
Acknowledgement
This work was supported by the National Key Research andDevelopment Programme of China (2017YFA0506100), theNational Natural Science Foundation of China (31870170 and31701168), and the Fok Ying Tung Education Foundation(161027) to XC; NTU startup grant (M4081533) and NIM/01/2016 (NTU, Singapore) to YM. We thank Lei Shi andZhongquan Lin for microscopy assistance.
Volume
229
Issue
2
Page
963-978
ISSN
eISSN
IST-REx-ID

Cite this

Ke M, Ma Z, Wang D, et al. Salicylic acid regulates PIN2 auxin transporter hyper-clustering and root gravitropic growth via Remorin-dependent lipid nanodomain organization in Arabidopsis thaliana. New Phytologist. 2021;229(2):963-978. doi:10.1111/nph.16915
Ke, M., Ma, Z., Wang, D., Sun, Y., Wen, C., Huang, D., … Chen, X. (2021). Salicylic acid regulates PIN2 auxin transporter hyper-clustering and root gravitropic growth via Remorin-dependent lipid nanodomain organization in Arabidopsis thaliana. New Phytologist. Wiley. https://doi.org/10.1111/nph.16915
Ke, M, Z Ma, D Wang, Y Sun, C Wen, D Huang, Z Chen, et al. “Salicylic Acid Regulates PIN2 Auxin Transporter Hyper-Clustering and Root Gravitropic Growth via Remorin-Dependent Lipid Nanodomain Organization in Arabidopsis Thaliana.” New Phytologist. Wiley, 2021. https://doi.org/10.1111/nph.16915.
M. Ke et al., “Salicylic acid regulates PIN2 auxin transporter hyper-clustering and root gravitropic growth via Remorin-dependent lipid nanodomain organization in Arabidopsis thaliana,” New Phytologist, vol. 229, no. 2. Wiley, pp. 963–978, 2021.
Ke M, Ma Z, Wang D, Sun Y, Wen C, Huang D, Chen Z, Yang L, Tan S, Li R, Friml J, Miao Y, Chen X. 2021. Salicylic acid regulates PIN2 auxin transporter hyper-clustering and root gravitropic growth via Remorin-dependent lipid nanodomain organization in Arabidopsis thaliana. New Phytologist. 229(2), 963–978.
Ke, M., et al. “Salicylic Acid Regulates PIN2 Auxin Transporter Hyper-Clustering and Root Gravitropic Growth via Remorin-Dependent Lipid Nanodomain Organization in Arabidopsis Thaliana.” New Phytologist, vol. 229, no. 2, Wiley, 2021, pp. 963–78, doi:10.1111/nph.16915.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2021-02-04
MD5 Checksum
d36b6a8c6fafab66264e0d27114dae63


Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Sources

PMID: 32901934
PubMed | Europe PMC

Search this title in

Google Scholar