Extracting the infrared permittivity of SiO2 substrates locally by near-field imaging of phonon polaritons in a van der Waals crystal
Aguilar-Merino P, Álvarez-Pérez G, Taboada-Gutiérrez J, Duan J, Prieto Gonzalez I, Álvarez-Prado LM, Nikitin AY, Martín-Sánchez J, Alonso-González P. 2021. Extracting the infrared permittivity of SiO2 substrates locally by near-field imaging of phonon polaritons in a van der Waals crystal. Nanomaterials. 11(1), 120.
Download
Journal Article
| Published
| English
Scopus indexed
Author
Aguilar-Merino, Patricia;
Álvarez-Pérez, Gonzalo;
Taboada-Gutiérrez, Javier;
Duan, Jiahua;
Prieto Gonzalez, IvanISTA ;
Álvarez-Prado, Luis Manuel;
Nikitin, Alexey Y.;
Martín-Sánchez, Javier;
Alonso-González, Pablo
Department
Abstract
Layered materials in which individual atomic layers are bonded by weak van der Waals forces (vdW materials) constitute one of the most prominent platforms for materials research. Particularly, polar vdW crystals, such as hexagonal boron nitride (h-BN), alpha-molybdenum trioxide (α-MoO3) or alpha-vanadium pentoxide (α-V2O5), have received significant attention in nano-optics, since they support phonon polaritons (PhPs)―light coupled to lattice vibrations― with strong electromagnetic confinement and low optical losses. Recently, correlative far- and near-field studies of α-MoO3 have been demonstrated as an effective strategy to accurately extract the permittivity of this material. Here, we use this accurately characterized and low-loss polaritonic material to sense its local dielectric environment, namely silica (SiO2), one of the most widespread substrates in nanotechnology. By studying the propagation of PhPs on α-MoO3 flakes with different thicknesses laying on SiO2 substrates via near-field microscopy (s-SNOM), we extract locally the infrared permittivity of SiO2. Our work reveals PhPs nanoimaging as a versatile method for the quantitative characterization of the local optical properties of dielectric substrates, crucial for understanding and predicting the response of nanomaterials and for the future scalability of integrated nanophotonic devices.
Publishing Year
Date Published
2021-01-07
Journal Title
Nanomaterials
Publisher
MDPI
Acknowledgement
P.A.-M. acknowledges financial support through JAE Intro program from the Superior
Council of Scientific Investigations and the Spanish Ministry of Science and Innovation (grant number JAEINT_20_00589). G.Á.-P. and J.T.-G. acknowledge financial support through the Severo Ochoa Program from the Government of the Principality of Asturias (grant numbers PA-20-PF-BP19-053 and PA-18-PF-BP17-126, respectively). J.M.-S. acknowledges financial support from the Ramón y Cajal Program of the Government of Spain (RYC2018-026196-I) and the Spanish Ministry of Science and Innovation (State Plan for Scientific and Technical Research and Innovation grant number PID2019-110308GA-I00). P.A.-G. acknowledges support from the European Research Council under starting grant no. 715496, 2DNANOPTICA and the Spanish Ministry of Science and Innovation (State Plan for Scientific and Technical Research and Innovation grant number PID2019-111156GB-I00).
Volume
11
Issue
1
Article Number
120
eISSN
IST-REx-ID
Cite this
Aguilar-Merino P, Álvarez-Pérez G, Taboada-Gutiérrez J, et al. Extracting the infrared permittivity of SiO2 substrates locally by near-field imaging of phonon polaritons in a van der Waals crystal. Nanomaterials. 2021;11(1). doi:10.3390/nano11010120
Aguilar-Merino, P., Álvarez-Pérez, G., Taboada-Gutiérrez, J., Duan, J., Prieto Gonzalez, I., Álvarez-Prado, L. M., … Alonso-González, P. (2021). Extracting the infrared permittivity of SiO2 substrates locally by near-field imaging of phonon polaritons in a van der Waals crystal. Nanomaterials. MDPI. https://doi.org/10.3390/nano11010120
Aguilar-Merino, Patricia, Gonzalo Álvarez-Pérez, Javier Taboada-Gutiérrez, Jiahua Duan, Ivan Prieto Gonzalez, Luis Manuel Álvarez-Prado, Alexey Y. Nikitin, Javier Martín-Sánchez, and Pablo Alonso-González. “Extracting the Infrared Permittivity of SiO2 Substrates Locally by Near-Field Imaging of Phonon Polaritons in a van Der Waals Crystal.” Nanomaterials. MDPI, 2021. https://doi.org/10.3390/nano11010120.
P. Aguilar-Merino et al., “Extracting the infrared permittivity of SiO2 substrates locally by near-field imaging of phonon polaritons in a van der Waals crystal,” Nanomaterials, vol. 11, no. 1. MDPI, 2021.
Aguilar-Merino P, Álvarez-Pérez G, Taboada-Gutiérrez J, Duan J, Prieto Gonzalez I, Álvarez-Prado LM, Nikitin AY, Martín-Sánchez J, Alonso-González P. 2021. Extracting the infrared permittivity of SiO2 substrates locally by near-field imaging of phonon polaritons in a van der Waals crystal. Nanomaterials. 11(1), 120.
Aguilar-Merino, Patricia, et al. “Extracting the Infrared Permittivity of SiO2 Substrates Locally by Near-Field Imaging of Phonon Polaritons in a van Der Waals Crystal.” Nanomaterials, vol. 11, no. 1, 120, MDPI, 2021, doi:10.3390/nano11010120.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
Access Level
Open Access
Date Uploaded
2021-01-25
MD5 Checksum
1edc13eeda83df5cd9fff9504727b1f5
Export
Marked PublicationsOpen Data ISTA Research Explorer
Web of Science
View record in Web of Science®Sources
PMID: 33430225
PubMed | Europe PMC