Distortions of the rain distribution with warming, with and without self‐aggregation
Fildier B, Collins WD, Muller CJ. 2021. Distortions of the rain distribution with warming, with and without self‐aggregation. Journal of Advances in Modeling Earth Systems. 13(2), e2020MS002256.
Download
Journal Article
| Published
| English
Scopus indexed
Author
Fildier, Benjamin;
Collins, William D.;
Muller, Caroline JISTA
Abstract
We investigate how mesoscale circulations associated with convective aggregation can modulate the sensitivity of the hydrologic cycle to warming. We quantify changes in the full distribution of rain across radiative‐convective equilibrium states in a cloud‐resolving model. For a given SST, the shift in mean rainfall between disorganized and organized states is associated with a shift in atmospheric radiative cooling, and is roughly analogous to the effect of a 4K SST increase. With rising temperatures, the increase in mean rain rate is insensitive to the presence of organization, while extremes can intensify faster in the aggregated state, leading to a faster amplification in the sporadic nature of rain. When convection aggregates, heavy rain is enhanced by 20‐30% and nonlinear behaviors are observed as a function of SST and strength of aggregation feedbacks. First, radiative‐ and surface‐flux aggregation feedbacks have multiplicative effects on extremes, illustrating a non‐trivial sensitivity to the degree of organization. Second, alternating Clausius‐Clapeyron and super‐Clausius‐Clapeyron regimes in extreme rainfall are found as a function of SST, corresponding to varying thermodynamic and dynamic contributions, and a large sensitivity to precipitation efficiency variations in some SST ranges.
The potential for mesoscale circulations in amplifying the hydrologic cycle is established. However these nonlinear distortions question the quantitative relevance of idealized self‐aggregation. This calls for a deeper investigation of relationships which capture the coupling between global energetics, aggregation feedbacks and local convection, and for systematic tests of their sensitivity to domain configurations, surface boundary conditions, microphysics and turbulence schemes.
Publishing Year
Date Published
2021-02-01
Journal Title
Journal of Advances in Modeling Earth Systems
Publisher
American Geophysical Union
Volume
13
Issue
2
Article Number
e2020MS002256
IST-REx-ID
Cite this
Fildier B, Collins WD, Muller CJ. Distortions of the rain distribution with warming, with and without self‐aggregation. Journal of Advances in Modeling Earth Systems. 2021;13(2). doi:10.1029/2020ms002256
Fildier, B., Collins, W. D., & Muller, C. J. (2021). Distortions of the rain distribution with warming, with and without self‐aggregation. Journal of Advances in Modeling Earth Systems. American Geophysical Union. https://doi.org/10.1029/2020ms002256
Fildier, Benjamin, William D. Collins, and Caroline J Muller. “Distortions of the Rain Distribution with Warming, with and without Self‐aggregation.” Journal of Advances in Modeling Earth Systems. American Geophysical Union, 2021. https://doi.org/10.1029/2020ms002256.
B. Fildier, W. D. Collins, and C. J. Muller, “Distortions of the rain distribution with warming, with and without self‐aggregation,” Journal of Advances in Modeling Earth Systems, vol. 13, no. 2. American Geophysical Union, 2021.
Fildier B, Collins WD, Muller CJ. 2021. Distortions of the rain distribution with warming, with and without self‐aggregation. Journal of Advances in Modeling Earth Systems. 13(2), e2020MS002256.
Fildier, Benjamin, et al. “Distortions of the Rain Distribution with Warming, with and without Self‐aggregation.” Journal of Advances in Modeling Earth Systems, vol. 13, no. 2, e2020MS002256, American Geophysical Union, 2021, doi:10.1029/2020ms002256.
All files available under the following license(s):
Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0):
Main File(s)
File Name
2021_JAMES_Fildier.pdf
1.95 MB
Access Level
Open Access
Date Uploaded
2021-08-11
MD5 Checksum
591ce69b7a36f24346d2061ac712f0f4