Impact of a mean current on the internal tide energy dissipation at the critical latitude

Richet O, Muller CJ, Chomaz J-M. 2017. Impact of a mean current on the internal tide energy dissipation at the critical latitude. Journal of Physical Oceanography. 47(6), 1457–1472.

Download (ext.)

Journal Article | Published | English
Author
Richet, O.; Muller, Caroline JISTA ; Chomaz, J.-M.
Abstract
Previous numerical studies of the dissipation of internal tides in idealized settings suggest the existence of a critical latitude (~29°) where dissipation is enhanced. But observations only indicate a modest enhancement at this latitude. To resolve this difference between observational and numerical results, the authors study the latitudinal dependence of internal tides’ dissipation in more realistic conditions. In particular, the ocean is not a quiescent medium; the presence of large-scale currents or mesoscale eddies can impact the propagation and dissipation of internal tides. This paper investigates the impact of a weak background mean current in numerical simulations. The authors focus on the local dissipation of high spatial mode internal waves near their generation site. The vertical profile of dissipation and its variation with latitude without the mean current are consistent with earlier studies. But adding a weak mean current has a major impact on the latitudinal distribution of dissipation. The peak at the critical latitude disappears, and the dissipation is closer to a constant, albeit with two weak peaks at ~25° and ~35° latitude. This disappearance results from the Doppler shift of the internal tides’ frequency, which hinders the nonlinear transfer of energy to small-scale secondary waves via the parametric subharmonic instability (PSI). The new two weak peaks correspond to the Doppler-shifted critical latitudes of the left- and right-propagating waves. The results are confirmed in simulations with simple sinusoidal topography. Thus, although nonlinear transfers via PSI are efficient at dissipating internal tides, the exact location of the dissipation is sensitive to large-scale oceanic conditions.
Keywords
Publishing Year
Date Published
2017-06-01
Journal Title
Journal of Physical Oceanography
Publisher
American Meteorological Society
Volume
47
Issue
6
Page
1457-1472
IST-REx-ID

Cite this

Richet O, Muller CJ, Chomaz J-M. Impact of a mean current on the internal tide energy dissipation at the critical latitude. Journal of Physical Oceanography. 2017;47(6):1457-1472. doi:10.1175/jpo-d-16-0197.1
Richet, O., Muller, C. J., & Chomaz, J.-M. (2017). Impact of a mean current on the internal tide energy dissipation at the critical latitude. Journal of Physical Oceanography. American Meteorological Society. https://doi.org/10.1175/jpo-d-16-0197.1
Richet, O., Caroline J Muller, and J.-M. Chomaz. “Impact of a Mean Current on the Internal Tide Energy Dissipation at the Critical Latitude.” Journal of Physical Oceanography. American Meteorological Society, 2017. https://doi.org/10.1175/jpo-d-16-0197.1.
O. Richet, C. J. Muller, and J.-M. Chomaz, “Impact of a mean current on the internal tide energy dissipation at the critical latitude,” Journal of Physical Oceanography, vol. 47, no. 6. American Meteorological Society, pp. 1457–1472, 2017.
Richet O, Muller CJ, Chomaz J-M. 2017. Impact of a mean current on the internal tide energy dissipation at the critical latitude. Journal of Physical Oceanography. 47(6), 1457–1472.
Richet, O., et al. “Impact of a Mean Current on the Internal Tide Energy Dissipation at the Critical Latitude.” Journal of Physical Oceanography, vol. 47, no. 6, American Meteorological Society, 2017, pp. 1457–72, doi:10.1175/jpo-d-16-0197.1.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar