INDITTO2 transposon conveys auxin-mediated DRO1 transcription for rice drought avoidance
Zhao Y, Wu L, Fu Q, Wang D, Li J, Yao B, Yu S, Jiang L, Qian J, Zhou X, Han L, Zhao S, Ma C, Zhang Y, Luo C, Dong Q, Li S, Zhang L, Jiang X, Li Y, Luo H, Li K, Yang J, Luo Q, Li L, Peng S, Huang H, Zuo Z, Liu C, Wang L, Li C, He X, Friml J, Du Y. 2021. INDITTO2 transposon conveys auxin-mediated DRO1 transcription for rice drought avoidance. Plant, Cell & Environment. 44(6), 1846–1857.
Download
Journal Article
| Published
| English
Scopus indexed
Author
Zhao, Y;
Wu, L;
Fu, Q;
Wang, D;
Li, J;
Yao, B;
Yu, S;
Jiang, L;
Qian, J;
Zhou, X;
Han, L;
Zhao, S
All
All
Department
Abstract
Transposable elements exist widely throughout plant genomes and play important roles in plant evolution. Auxin is an important regulator that is traditionally associated with root development and drought stress adaptation. The DEEPER ROOTING 1 (DRO1) gene is a key component of rice drought avoidance. Here, we identified a transposon that acts as an autonomous auxin‐responsive promoter and its presence at specific genome positions conveys physiological adaptations related to drought avoidance. Rice varieties with high and auxin‐mediated transcription of DRO1 in the root tip show deeper and longer root phenotypes and are thus better adapted to drought. The INDITTO2 transposon contains an auxin response element and displays auxin‐responsive promoter activity; it is thus able to convey auxin regulation of transcription to genes in its proximity. In the rice Acuce, which displays DRO1‐mediated drought adaptation, the INDITTO2 transposon was found to be inserted at the promoter region of the DRO1 locus. Transgenesis‐based insertion of the INDITTO2 transposon into the DRO1 promoter of the non‐adapted rice variety Nipponbare was sufficient to promote its drought avoidance. Our data identify an example of how transposons can act as promoters and convey hormonal regulation to nearby loci, improving plant fitness in response to different abiotic stresses.
Publishing Year
Date Published
2021-06-01
Journal Title
Plant, Cell & Environment
Publisher
Wiley
Volume
44
Issue
6
Page
1846-1857
ISSN
eISSN
IST-REx-ID
Cite this
Zhao Y, Wu L, Fu Q, et al. INDITTO2 transposon conveys auxin-mediated DRO1 transcription for rice drought avoidance. Plant, Cell & Environment. 2021;44(6):1846-1857. doi:10.1111/pce.14029
Zhao, Y., Wu, L., Fu, Q., Wang, D., Li, J., Yao, B., … Du, Y. (2021). INDITTO2 transposon conveys auxin-mediated DRO1 transcription for rice drought avoidance. Plant, Cell & Environment. Wiley. https://doi.org/10.1111/pce.14029
Zhao, Y, L Wu, Q Fu, D Wang, J Li, B Yao, S Yu, et al. “INDITTO2 Transposon Conveys Auxin-Mediated DRO1 Transcription for Rice Drought Avoidance.” Plant, Cell & Environment. Wiley, 2021. https://doi.org/10.1111/pce.14029.
Y. Zhao et al., “INDITTO2 transposon conveys auxin-mediated DRO1 transcription for rice drought avoidance,” Plant, Cell & Environment, vol. 44, no. 6. Wiley, pp. 1846–1857, 2021.
Zhao Y, Wu L, Fu Q, Wang D, Li J, Yao B, Yu S, Jiang L, Qian J, Zhou X, Han L, Zhao S, Ma C, Zhang Y, Luo C, Dong Q, Li S, Zhang L, Jiang X, Li Y, Luo H, Li K, Yang J, Luo Q, Li L, Peng S, Huang H, Zuo Z, Liu C, Wang L, Li C, He X, Friml J, Du Y. 2021. INDITTO2 transposon conveys auxin-mediated DRO1 transcription for rice drought avoidance. Plant, Cell & Environment. 44(6), 1846–1857.
Zhao, Y., et al. “INDITTO2 Transposon Conveys Auxin-Mediated DRO1 Transcription for Rice Drought Avoidance.” Plant, Cell & Environment, vol. 44, no. 6, Wiley, 2021, pp. 1846–57, doi:10.1111/pce.14029.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Main File(s)
File Name
Access Level
Open Access
Date Uploaded
2023-11-02
MD5 Checksum
a812418fede076741c9c4dc07f317068
Export
Marked PublicationsOpen Data ISTA Research Explorer
Web of Science
View record in Web of Science®Sources
PMID: 33576018
PubMed | Europe PMC