Mechanical instabilities of biological tubes

Hannezo EB, Prost J, Joanny J. 2012. Mechanical instabilities of biological tubes. Physical Review Letters. 109(1).


Journal Article | Published | English
Author
Hannezo, Edouard ISTA ; Prost, Jacques; Joanny, Jean
Abstract
We study theoretically the morphologies of biological tubes affected by various pathologies. When epithelial cells grow, the negative tension produced by their division provokes a buckling instability. Several shapes are investigated: varicose, dilated, sinuous, or sausagelike. They are all found in pathologies of tracheal, renal tubes, or arteries. The final shape depends crucially on the mechanical parameters of the tissues: Young's modulus, wall-to-lumen ratio, homeostatic pressure. We argue that since tissues must be in quasistatic mechanical equilibrium, abnormal shapes convey information as to what causes the pathology. We calculate a phase diagram of tubular instabilities which could be a helpful guide for investigating the underlying genetic regulation.
Publishing Year
Date Published
2012-07-03
Journal Title
Physical Review Letters
Volume
109
Issue
1
IST-REx-ID
922

Cite this

Hannezo EB, Prost J, Joanny J. Mechanical instabilities of biological tubes. Physical Review Letters. 2012;109(1). doi:10.1103/PhysRevLett.109.018101
Hannezo, E. B., Prost, J., & Joanny, J. (2012). Mechanical instabilities of biological tubes. Physical Review Letters. American Physical Society. https://doi.org/10.1103/PhysRevLett.109.018101
Hannezo, Edouard B, Jacques Prost, and Jean Joanny. “Mechanical Instabilities of Biological Tubes.” Physical Review Letters. American Physical Society, 2012. https://doi.org/10.1103/PhysRevLett.109.018101.
E. B. Hannezo, J. Prost, and J. Joanny, “Mechanical instabilities of biological tubes,” Physical Review Letters, vol. 109, no. 1. American Physical Society, 2012.
Hannezo EB, Prost J, Joanny J. 2012. Mechanical instabilities of biological tubes. Physical Review Letters. 109(1).
Hannezo, Edouard B., et al. “Mechanical Instabilities of Biological Tubes.” Physical Review Letters, vol. 109, no. 1, American Physical Society, 2012, doi:10.1103/PhysRevLett.109.018101.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Sources

arXiv 1207.1516

Search this title in

Google Scholar