Mechanism of mediated alkali peroxide oxidation and triplet versus singlet oxygen formation

Petit YK, Mourad E, Prehal C, Leypold C, Windischbacher A, Mijailovic D, Slugovc C, Borisov SM, Zojer E, Brutti S, Fontaine O, Freunberger SA. 2021. Mechanism of mediated alkali peroxide oxidation and triplet versus singlet oxygen formation. Nature Chemistry. 13(5), 465–471.

Download
OA 2021_NatureChem_Petit_acceptedVersion.pdf 1.81 MB [Submitted Version]

Journal Article | Published | English

Scopus indexed
Author
Petit, Yann K.; Mourad, Eléonore; Prehal, Christian; Leypold, Christian; Windischbacher, Andreas; Mijailovic, Daniel; Slugovc, Christian; Borisov, Sergey M.; Zojer, Egbert; Brutti, Sergio; Fontaine, Olivier; Freunberger, Stefan AlexanderISTA
All

Corresponding author has ISTA affiliation

Department
Abstract
Aprotic alkali metal–O2 batteries face two major obstacles to their chemistry occurring efficiently, the insulating nature of the formed alkali superoxides/peroxides and parasitic reactions that are caused by the highly reactive singlet oxygen (1O2). Redox mediators are recognized to be key for improving rechargeability. However, it is unclear how they affect 1O2 formation, which hinders strategies for their improvement. Here we clarify the mechanism of mediated peroxide and superoxide oxidation and thus explain how redox mediators either enhance or suppress 1O2 formation. We show that charging commences with peroxide oxidation to a superoxide intermediate and that redox potentials above ~3.5 V versus Li/Li+ drive 1O2 evolution from superoxide oxidation, while disproportionation always generates some 1O2. We find that 1O2 suppression requires oxidation to be faster than the generation of 1O2 from disproportionation. Oxidation rates decrease with growing driving force following Marcus inverted-region behaviour, establishing a region of maximum rate.
Publishing Year
Date Published
2021-03-15
Journal Title
Nature Chemistry
Publisher
Springer Nature
Acknowledgement
S.A.F. is indebted to the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 636069) as well as IST Austria. O.F thanks the French National Research Agency (STORE-EX Labex Project ANR-10-LABX-76-01). We thank EL-Cell GmbH (Hamburg, Germany) for the pressure test cell. We thank R. Saf for help with the mass spectrometry, J. Schlegl for manufacturing instrumentation, M. Winkler of Acib GmbH, G. Strohmeier and R. Fürst for HPLC measurements and S. Mondal and S. Stadlbauer for kinetic measurements.
Acknowledged SSUs
Volume
13
Issue
5
Page
465-471
ISSN
eISSN
IST-REx-ID

Cite this

Petit YK, Mourad E, Prehal C, et al. Mechanism of mediated alkali peroxide oxidation and triplet versus singlet oxygen formation. Nature Chemistry. 2021;13(5):465-471. doi:10.1038/s41557-021-00643-z
Petit, Y. K., Mourad, E., Prehal, C., Leypold, C., Windischbacher, A., Mijailovic, D., … Freunberger, S. A. (2021). Mechanism of mediated alkali peroxide oxidation and triplet versus singlet oxygen formation. Nature Chemistry. Springer Nature. https://doi.org/10.1038/s41557-021-00643-z
Petit, Yann K., Eléonore Mourad, Christian Prehal, Christian Leypold, Andreas Windischbacher, Daniel Mijailovic, Christian Slugovc, et al. “Mechanism of Mediated Alkali Peroxide Oxidation and Triplet versus Singlet Oxygen Formation.” Nature Chemistry. Springer Nature, 2021. https://doi.org/10.1038/s41557-021-00643-z.
Y. K. Petit et al., “Mechanism of mediated alkali peroxide oxidation and triplet versus singlet oxygen formation,” Nature Chemistry, vol. 13, no. 5. Springer Nature, pp. 465–471, 2021.
Petit YK, Mourad E, Prehal C, Leypold C, Windischbacher A, Mijailovic D, Slugovc C, Borisov SM, Zojer E, Brutti S, Fontaine O, Freunberger SA. 2021. Mechanism of mediated alkali peroxide oxidation and triplet versus singlet oxygen formation. Nature Chemistry. 13(5), 465–471.
Petit, Yann K., et al. “Mechanism of Mediated Alkali Peroxide Oxidation and Triplet versus Singlet Oxygen Formation.” Nature Chemistry, vol. 13, no. 5, Springer Nature, 2021, pp. 465–71, doi:10.1038/s41557-021-00643-z.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Main File(s)
Access Level
OA Open Access
Date Uploaded
2021-03-22
Embargo End Date
2021-09-15
MD5 Checksum
3ee3f8dd79ed1b7bb0929fce184c8012


Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Sources

PMID: 33723377
PubMed | Europe PMC

Search this title in

Google Scholar