DNA methylation profiling identifies CG methylation clusters in Arabidopsis genes
Tran RK, Henikoff JG, Zilberman D, Ditt RF, Jacobsen SE, Henikoff S. 2005. DNA methylation profiling identifies CG methylation clusters in Arabidopsis genes. Current Biology. 15(2), 154–159.
Download (ext.)
https://doi.org/10.1016/j.cub.2005.01.008
[Published Version]
Journal Article
| Published
| English
Scopus indexed
Author
Tran, Robert K.;
Henikoff, Jorja G.;
Zilberman, DanielISTA ;
Ditt, Renata F.;
Jacobsen, Steven E.;
Henikoff, Steven
Department
Abstract
Cytosine DNA methylation in vertebrates is widespread, but methylation in plants is found almost exclusively at transposable elements and repetitive DNA [1]. Within regions of methylation, methylcytosines are typically found in CG, CNG, and asymmetric contexts. CG sites are maintained by a plant homolog of mammalian Dnmt1 acting on hemi-methylated DNA after replication. Methylation of CNG and asymmetric sites appears to be maintained at each cell cycle by other mechanisms. We report a new type of DNA methylation in Arabidopsis, dense CG methylation clusters found at scattered sites throughout the genome. These clusters lack non-CG methylation and are preferentially found in genes, although they are relatively deficient toward the 5′ end. CG methylation clusters are present in lines derived from different accessions and in mutants that eliminate de novo methylation, indicating that CG methylation clusters are stably maintained at specific sites. Because 5-methylcytosine is mutagenic, the appearance of CG methylation clusters over evolutionary time predicts a genome-wide deficiency of CG dinucleotides and an excess of C(A/T)G trinucleotides within transcribed regions. This is exactly what we find, implying that CG methylation clusters have contributed profoundly to plant gene evolution. We suggest that CG methylation clusters silence cryptic promoters that arise sporadically within transcription units.
Publishing Year
Date Published
2005-01-26
Journal Title
Current Biology
Publisher
Elsevier
Volume
15
Issue
2
Page
154-159
ISSN
eISSN
IST-REx-ID
Cite this
Tran RK, Henikoff JG, Zilberman D, Ditt RF, Jacobsen SE, Henikoff S. DNA methylation profiling identifies CG methylation clusters in Arabidopsis genes. Current Biology. 2005;15(2):154-159. doi:10.1016/j.cub.2005.01.008
Tran, R. K., Henikoff, J. G., Zilberman, D., Ditt, R. F., Jacobsen, S. E., & Henikoff, S. (2005). DNA methylation profiling identifies CG methylation clusters in Arabidopsis genes. Current Biology. Elsevier. https://doi.org/10.1016/j.cub.2005.01.008
Tran, Robert K., Jorja G. Henikoff, Daniel Zilberman, Renata F. Ditt, Steven E. Jacobsen, and Steven Henikoff. “DNA Methylation Profiling Identifies CG Methylation Clusters in Arabidopsis Genes.” Current Biology. Elsevier, 2005. https://doi.org/10.1016/j.cub.2005.01.008.
R. K. Tran, J. G. Henikoff, D. Zilberman, R. F. Ditt, S. E. Jacobsen, and S. Henikoff, “DNA methylation profiling identifies CG methylation clusters in Arabidopsis genes,” Current Biology, vol. 15, no. 2. Elsevier, pp. 154–159, 2005.
Tran RK, Henikoff JG, Zilberman D, Ditt RF, Jacobsen SE, Henikoff S. 2005. DNA methylation profiling identifies CG methylation clusters in Arabidopsis genes. Current Biology. 15(2), 154–159.
Tran, Robert K., et al. “DNA Methylation Profiling Identifies CG Methylation Clusters in Arabidopsis Genes.” Current Biology, vol. 15, no. 2, Elsevier, 2005, pp. 154–59, doi:10.1016/j.cub.2005.01.008.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access
Export
Marked PublicationsOpen Data ISTA Research Explorer
Sources
PMID: 15668172
PubMed | Europe PMC