Neural acceleration of scattering-aware color 3D printing
Rittig T, Sumin D, Babaei V, Didyk P, Voloboy A, Wilkie A, Bickel B, Myszkowski K, Weyrich T, Křivánek J. 2021. Neural acceleration of scattering-aware color 3D printing. Computer Graphics Forum. 40(2), 205–219.
Download
Journal Article
| Published
| English
Scopus indexed
Author
Rittig, Tobias;
Sumin, Denis;
Babaei, Vahid;
Didyk, Piotr;
Voloboy, Alexey;
Wilkie, Alexander;
Bickel, BerndISTA ;
Myszkowski, Karol;
Weyrich, Tim;
Křivánek, Jaroslav
Department
Grant
Abstract
With the wider availability of full-color 3D printers, color-accurate 3D-print preparation has received increased attention. A key challenge lies in the inherent translucency of commonly used print materials that blurs out details of the color texture. Previous work tries to compensate for these scattering effects through strategic assignment of colored primary materials to printer voxels. To date, the highest-quality approach uses iterative optimization that relies on computationally expensive Monte Carlo light transport simulation to predict the surface appearance from subsurface scattering within a given print material distribution; that optimization, however, takes in the order of days on a single machine. In our work, we dramatically speed up the process by replacing the light transport simulation with a data-driven approach. Leveraging a deep neural network to predict the scattering within a highly heterogeneous medium, our method performs around two orders of magnitude faster than Monte Carlo rendering while yielding optimization results of similar quality level. The network is based on an established method from atmospheric cloud rendering, adapted to our domain and extended by a physically motivated weight sharing scheme that substantially reduces the network size. We analyze its performance in an end-to-end print preparation pipeline and compare quality and runtime to alternative approaches, and demonstrate its generalization to unseen geometry and material values. This for the first time enables full heterogenous material optimization for 3D-print preparation within time frames in the order of the actual printing time.
Publishing Year
Date Published
2021-05-01
Journal Title
Computer Graphics Forum
Acknowledgement
We thank Sebastian Cucerca for processing and capturing the phys-cal printouts. This work was supported by the Charles University grant SVV-260588 and Czech Science Foundation grant 19-07626S. This project has received funding from the European Union’s Horizon 2020 research and innovation programme, under the Marie Skłodowska Curie grant agreements No 642841 (DISTRO) and No765911 (RealVision), and under the European Research Council grant agreement No 715767 (MATERIALIZABLE).
Volume
40
Issue
2
Page
205-219
ISSN
eISSN
IST-REx-ID
Cite this
Rittig T, Sumin D, Babaei V, et al. Neural acceleration of scattering-aware color 3D printing. Computer Graphics Forum. 2021;40(2):205-219. doi:10.1111/cgf.142626
Rittig, T., Sumin, D., Babaei, V., Didyk, P., Voloboy, A., Wilkie, A., … Křivánek, J. (2021). Neural acceleration of scattering-aware color 3D printing. Computer Graphics Forum. Wiley. https://doi.org/10.1111/cgf.142626
Rittig, Tobias, Denis Sumin, Vahid Babaei, Piotr Didyk, Alexey Voloboy, Alexander Wilkie, Bernd Bickel, Karol Myszkowski, Tim Weyrich, and Jaroslav Křivánek. “Neural Acceleration of Scattering-Aware Color 3D Printing.” Computer Graphics Forum. Wiley, 2021. https://doi.org/10.1111/cgf.142626.
T. Rittig et al., “Neural acceleration of scattering-aware color 3D printing,” Computer Graphics Forum, vol. 40, no. 2. Wiley, pp. 205–219, 2021.
Rittig T, Sumin D, Babaei V, Didyk P, Voloboy A, Wilkie A, Bickel B, Myszkowski K, Weyrich T, Křivánek J. 2021. Neural acceleration of scattering-aware color 3D printing. Computer Graphics Forum. 40(2), 205–219.
Rittig, Tobias, et al. “Neural Acceleration of Scattering-Aware Color 3D Printing.” Computer Graphics Forum, vol. 40, no. 2, Wiley, 2021, pp. 205–19, doi:10.1111/cgf.142626.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Main File(s)
File Name
Access Level
Open Access
Date Uploaded
2021-10-11
MD5 Checksum
33271724215f54a75c39d2ed40f2c502
Export
Marked PublicationsOpen Data ISTA Research Explorer