Theoretical prediction of the homogeneous ice nucleation rate: Disentangling thermodynamics and kinetics

Cheng B, Dellago C, Ceriotti M. 2018. Theoretical prediction of the homogeneous ice nucleation rate: Disentangling thermodynamics and kinetics. Physical Chemistry Chemical Physics. 20(45), 28732–28740.

Download (ext.)

Journal Article | Published | English

Scopus indexed
Author
Cheng, BingqingISTA ; Dellago, Christoph; Ceriotti, Michele
Abstract
Estimating the homogeneous ice nucleation rate from undercooled liquid water is crucial for understanding many important physical phenomena and technological applications, and challenging for both experiments and theory. From a theoretical point of view, difficulties arise due to the long time scales required, as well as the numerous nucleation pathways involved to form ice nuclei with different stacking disorders. We computed the homogeneous ice nucleation rate at a physically relevant undercooling for a single-site water model, taking into account the diffuse nature of ice–water interfaces, stacking disorders in ice nuclei, and the addition rate of particles to the critical nucleus. We disentangled and investigated the relative importance of all the terms, including interfacial free energy, entropic contributions and the kinetic prefactor, that contribute to the overall nucleation rate. Breaking down the problem into pieces not only provides physical insights into ice nucleation, but also sheds light on the long-standing discrepancy between different theoretical predictions, as well as between theoretical and experimental determinations of the nucleation rate. Moreover, we pinpoint the main shortcomings and suggest strategies to systematically improve the existing simulation methods.
Publishing Year
Date Published
2018-12-07
Journal Title
Physical Chemistry Chemical Physics
Volume
20
Issue
45
Page
28732-28740
ISSN
eISSN
IST-REx-ID

Cite this

Cheng B, Dellago C, Ceriotti M. Theoretical prediction of the homogeneous ice nucleation rate: Disentangling thermodynamics and kinetics. Physical Chemistry Chemical Physics. 2018;20(45):28732-28740. doi:10.1039/c8cp04561e
Cheng, B., Dellago, C., & Ceriotti, M. (2018). Theoretical prediction of the homogeneous ice nucleation rate: Disentangling thermodynamics and kinetics. Physical Chemistry Chemical Physics. Royal Society of Chemistry. https://doi.org/10.1039/c8cp04561e
Cheng, Bingqing, Christoph Dellago, and Michele Ceriotti. “Theoretical Prediction of the Homogeneous Ice Nucleation Rate: Disentangling Thermodynamics and Kinetics.” Physical Chemistry Chemical Physics. Royal Society of Chemistry, 2018. https://doi.org/10.1039/c8cp04561e.
B. Cheng, C. Dellago, and M. Ceriotti, “Theoretical prediction of the homogeneous ice nucleation rate: Disentangling thermodynamics and kinetics,” Physical Chemistry Chemical Physics, vol. 20, no. 45. Royal Society of Chemistry, pp. 28732–28740, 2018.
Cheng B, Dellago C, Ceriotti M. 2018. Theoretical prediction of the homogeneous ice nucleation rate: Disentangling thermodynamics and kinetics. Physical Chemistry Chemical Physics. 20(45), 28732–28740.
Cheng, Bingqing, et al. “Theoretical Prediction of the Homogeneous Ice Nucleation Rate: Disentangling Thermodynamics and Kinetics.” Physical Chemistry Chemical Physics, vol. 20, no. 45, Royal Society of Chemistry, 2018, pp. 28732–40, doi:10.1039/c8cp04561e.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Sources

PMID: 30412211
PubMed | Europe PMC

arXiv 1807.05551

Search this title in

Google Scholar