Evidence for supercritical behaviour of high-pressure liquid hydrogen

Cheng B, Mazzola G, Pickard CJ, Ceriotti M. 2020. Evidence for supercritical behaviour of high-pressure liquid hydrogen. Nature. 585(7824), 217–220.

Download (ext.)

Journal Article | Published | English

Scopus indexed
Author
Cheng, BingqingISTA ; Mazzola, Guglielmo; Pickard, Chris J.; Ceriotti, Michele
Abstract
Hydrogen, the simplest and most abundant element in the Universe, develops a remarkably complex behaviour upon compression^1. Since Wigner predicted the dissociation and metallization of solid hydrogen at megabar pressures almost a century ago^2, several efforts have been made to explain the many unusual properties of dense hydrogen, including a rich and poorly understood solid polymorphism^1,3-5, an anomalous melting line6 and the possible transition to a superconducting state^7. Experiments at such extreme conditions are challenging and often lead to hard-to-interpret and controversial observations, whereas theoretical investigations are constrained by the huge computational cost of sufficiently accurate quantum mechanical calculations. Here we present a theoretical study of the phase diagram of dense hydrogen that uses machine learning to 'learn' potential-energy surfaces and interatomic forces from reference calculations and then predict them at low computational cost, overcoming length- and timescale limitations. We reproduce both the re-entrant melting behaviour and the polymorphism of the solid phase. Simulations using our machine-learning-based potentials provide evidence for a continuous molecular-to-atomic transition in the liquid, with no first-order transition observed above the melting line. This suggests a smooth transition between insulating and metallic layers in giant gas planets, and reconciles existing discrepancies between experiments as a manifestation of supercritical behaviour.
Publishing Year
Date Published
2020-09-10
Journal Title
Nature
Publisher
Springer Nature
Volume
585
Issue
7824
Page
217-220
ISSN
eISSN
IST-REx-ID

Cite this

Cheng B, Mazzola G, Pickard CJ, Ceriotti M. Evidence for supercritical behaviour of high-pressure liquid hydrogen. Nature. 2020;585(7824):217-220. doi:10.1038/s41586-020-2677-y
Cheng, B., Mazzola, G., Pickard, C. J., & Ceriotti, M. (2020). Evidence for supercritical behaviour of high-pressure liquid hydrogen. Nature. Springer Nature. https://doi.org/10.1038/s41586-020-2677-y
Cheng, Bingqing, Guglielmo Mazzola, Chris J. Pickard, and Michele Ceriotti. “Evidence for Supercritical Behaviour of High-Pressure Liquid Hydrogen.” Nature. Springer Nature, 2020. https://doi.org/10.1038/s41586-020-2677-y.
B. Cheng, G. Mazzola, C. J. Pickard, and M. Ceriotti, “Evidence for supercritical behaviour of high-pressure liquid hydrogen,” Nature, vol. 585, no. 7824. Springer Nature, pp. 217–220, 2020.
Cheng B, Mazzola G, Pickard CJ, Ceriotti M. 2020. Evidence for supercritical behaviour of high-pressure liquid hydrogen. Nature. 585(7824), 217–220.
Cheng, Bingqing, et al. “Evidence for Supercritical Behaviour of High-Pressure Liquid Hydrogen.” Nature, vol. 585, no. 7824, Springer Nature, 2020, pp. 217–20, doi:10.1038/s41586-020-2677-y.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Sources

PMID: 32908269
PubMed | Europe PMC

arXiv 1906.03341

Search this title in

Google Scholar