Data from: Elevated virulence of an emerging viral genotype as a driver of honeybee loss

Mcmahon D, Natsopoulou M, Doublet V, Fürst M, Weging S, Brown M, Gogol Döring A, Paxton R. 2016. Data from: Elevated virulence of an emerging viral genotype as a driver of honeybee loss, Dryad, 10.5061/dryad.cq7t1.


Research Data Reference
Creator
Mcmahon, Dino; Natsopoulou, Myrsini; Doublet, Vincent; Fürst, MatthiasISTA ; Weging, Silvio; Brown, Mark; Gogol Döring, Andreas; Paxton, Robert
Department
Abstract
Emerging infectious diseases (EIDs) have contributed significantly to the current biodiversity crisis, leading to widespread epidemics and population loss. Owing to genetic variation in pathogen virulence, a complete understanding of species decline requires the accurate identification and characterization of EIDs. We explore this issue in the Western honeybee, where increasing mortality of populations in the Northern Hemisphere has caused major concern. Specifically, we investigate the importance of genetic identity of the main suspect in mortality, deformed wing virus (DWV), in driving honeybee loss. Using laboratory experiments and a systematic field survey, we demonstrate that an emerging DWV genotype (DWV-B) is more virulent than the established DWV genotype (DWV-A) and is widespread in the landscape. Furthermore, we show in a simple model that colonies infected with DWV-B collapse sooner than colonies infected with DWV-A. We also identify potential for rapid DWV evolution by revealing extensive genome-wide recombination in vivo. The emergence of DWV-B in naive honeybee populations, including via recombination with DWV-A, could be of significant ecological and economic importance. Our findings emphasize that knowledge of pathogen genetic identity and diversity is critical to understanding drivers of species decline.
Publishing Year
Date Published
2016-05-06
IST-REx-ID

Cite this

Mcmahon D, Natsopoulou M, Doublet V, et al. Data from: Elevated virulence of an emerging viral genotype as a driver of honeybee loss. 2016. doi:10.5061/dryad.cq7t1
Mcmahon, D., Natsopoulou, M., Doublet, V., Fürst, M., Weging, S., Brown, M., … Paxton, R. (2016). Data from: Elevated virulence of an emerging viral genotype as a driver of honeybee loss. Dryad. https://doi.org/10.5061/dryad.cq7t1
Mcmahon, Dino, Myrsini Natsopoulou, Vincent Doublet, Matthias Fürst, Silvio Weging, Mark Brown, Andreas Gogol Döring, and Robert Paxton. “Data from: Elevated Virulence of an Emerging Viral Genotype as a Driver of Honeybee Loss.” Dryad, 2016. https://doi.org/10.5061/dryad.cq7t1.
D. Mcmahon et al., “Data from: Elevated virulence of an emerging viral genotype as a driver of honeybee loss.” Dryad, 2016.
Mcmahon D, Natsopoulou M, Doublet V, Fürst M, Weging S, Brown M, Gogol Döring A, Paxton R. 2016. Data from: Elevated virulence of an emerging viral genotype as a driver of honeybee loss, Dryad, 10.5061/dryad.cq7t1.
Mcmahon, Dino, et al. Data from: Elevated Virulence of an Emerging Viral Genotype as a Driver of Honeybee Loss. Dryad, 2016, doi:10.5061/dryad.cq7t1.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar