Scattering in quantum dots via noncommutative rational functions
Erdös L, Krüger TH, Nemish Y. 2021. Scattering in quantum dots via noncommutative rational functions. Annales Henri Poincaré . 22, 4205–4269.
Download
Journal Article
| Published
| English
Scopus indexed
Department
Abstract
In the customary random matrix model for transport in quantum dots with M internal degrees of freedom coupled to a chaotic environment via 𝑁≪𝑀 channels, the density 𝜌 of transmission eigenvalues is computed from a specific invariant ensemble for which explicit formula for the joint probability density of all eigenvalues is available. We revisit this problem in the large N regime allowing for (i) arbitrary ratio 𝜙:=𝑁/𝑀≤1; and (ii) general distributions for the matrix elements of the Hamiltonian of the quantum dot. In the limit 𝜙→0, we recover the formula for the density 𝜌 that Beenakker (Rev Mod Phys 69:731–808, 1997) has derived for a special matrix ensemble. We also prove that the inverse square root singularity of the density at zero and full transmission in Beenakker’s formula persists for any 𝜙<1 but in the borderline case 𝜙=1 an anomalous 𝜆−2/3 singularity arises at zero. To access this level of generality, we develop the theory of global and local laws on the spectral density of a large class of noncommutative rational expressions in large random matrices with i.i.d. entries.
Publishing Year
Date Published
2021-12-01
Journal Title
Annales Henri Poincaré
Publisher
Springer Nature
Acknowledgement
The authors are very grateful to Yan Fyodorov for discussions on the physical background and for providing references, and to the anonymous referee for numerous valuable remarks.
Volume
22
Page
4205–4269
ISSN
eISSN
IST-REx-ID
Cite this
Erdös L, Krüger TH, Nemish Y. Scattering in quantum dots via noncommutative rational functions. Annales Henri Poincaré . 2021;22:4205–4269. doi:10.1007/s00023-021-01085-6
Erdös, L., Krüger, T. H., & Nemish, Y. (2021). Scattering in quantum dots via noncommutative rational functions. Annales Henri Poincaré . Springer Nature. https://doi.org/10.1007/s00023-021-01085-6
Erdös, László, Torben H Krüger, and Yuriy Nemish. “Scattering in Quantum Dots via Noncommutative Rational Functions.” Annales Henri Poincaré . Springer Nature, 2021. https://doi.org/10.1007/s00023-021-01085-6.
L. Erdös, T. H. Krüger, and Y. Nemish, “Scattering in quantum dots via noncommutative rational functions,” Annales Henri Poincaré , vol. 22. Springer Nature, pp. 4205–4269, 2021.
Erdös L, Krüger TH, Nemish Y. 2021. Scattering in quantum dots via noncommutative rational functions. Annales Henri Poincaré . 22, 4205–4269.
Erdös, László, et al. “Scattering in Quantum Dots via Noncommutative Rational Functions.” Annales Henri Poincaré , vol. 22, Springer Nature, 2021, pp. 4205–4269, doi:10.1007/s00023-021-01085-6.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
2021_AnnHenriPoincare_Erdoes.pdf
1.16 MB
Access Level
Open Access
Date Uploaded
2022-05-12
MD5 Checksum
8d6bac0e2b0a28539608b0538a8e3b38
Export
Marked PublicationsOpen Data ISTA Research Explorer
Web of Science
View record in Web of Science®Sources
arXiv 1911.05112