Fingerprints of angulon instabilities in the spectra of matrix-isolated molecules

Cherepanov I, Lemeshko M. 2017. Fingerprints of angulon instabilities in the spectra of matrix-isolated molecules. Physical Review Materials. 1(3).

Download (ext.)
OA https://arxiv.org/abs/1705.09220 [Submitted Version]

Journal Article | Published | English

Scopus indexed

Corresponding author has ISTA affiliation

Department
Abstract
The formation of vortices is usually considered to be the main mechanism of angular momentum disposal in superfluids. Recently, it was predicted that a superfluid can acquire angular momentum via an alternative, microscopic route -- namely, through interaction with rotating impurities, forming so-called `angulon quasiparticles' [Phys. Rev. Lett. 114, 203001 (2015)]. The angulon instabilities correspond to transfer of a small number of angular momentum quanta from the impurity to the superfluid, as opposed to vortex instabilities, where angular momentum is quantized in units of ℏ per atom. Furthermore, since conventional impurities (such as molecules) represent three-dimensional (3D) rotors, the angular momentum transferred is intrinsically 3D as well, as opposed to a merely planar rotation which is inherent to vortices. Herein we show that the angulon theory can explain the anomalous broadening of the spectroscopic lines observed for CH 3 and NH 3 molecules in superfluid helium nanodroplets, thereby providing a fingerprint of the emerging angulon instabilities in experiment.
Publishing Year
Date Published
2017-08-08
Journal Title
Physical Review Materials
Publisher
American Physical Society
Volume
1
Issue
3
IST-REx-ID
994

Cite this

Cherepanov I, Lemeshko M. Fingerprints of angulon instabilities in the spectra of matrix-isolated molecules. Physical Review Materials. 2017;1(3). doi:10.1103/PhysRevMaterials.1.035602
Cherepanov, I., & Lemeshko, M. (2017). Fingerprints of angulon instabilities in the spectra of matrix-isolated molecules. Physical Review Materials. American Physical Society. https://doi.org/10.1103/PhysRevMaterials.1.035602
Cherepanov, Igor, and Mikhail Lemeshko. “Fingerprints of Angulon Instabilities in the Spectra of Matrix-Isolated Molecules.” Physical Review Materials. American Physical Society, 2017. https://doi.org/10.1103/PhysRevMaterials.1.035602.
I. Cherepanov and M. Lemeshko, “Fingerprints of angulon instabilities in the spectra of matrix-isolated molecules,” Physical Review Materials, vol. 1, no. 3. American Physical Society, 2017.
Cherepanov I, Lemeshko M. 2017. Fingerprints of angulon instabilities in the spectra of matrix-isolated molecules. Physical Review Materials. 1(3).
Cherepanov, Igor, and Mikhail Lemeshko. “Fingerprints of Angulon Instabilities in the Spectra of Matrix-Isolated Molecules.” Physical Review Materials, vol. 1, no. 3, American Physical Society, 2017, doi:10.1103/PhysRevMaterials.1.035602.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Search this title in

Google Scholar