Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
158 Publications
2023 | Published | Conference Paper | IST-REx-ID: 13053 |
CrAM: A Compression-Aware Minimizer
A. Krumes, A. Vladu, E. Kurtic, C. Lampert, D.-A. Alistarh, in:, 11th International Conference on Learning Representations , OpenReview, 2023.
[Published Version]
View
| Files available
| Download Published Version (ext.)
| arXiv
A. Krumes, A. Vladu, E. Kurtic, C. Lampert, D.-A. Alistarh, in:, 11th International Conference on Learning Representations , OpenReview, 2023.
2023 | Published | Conference Paper | IST-REx-ID: 15363 |
Knowledge distillation performs partial variance reduction
M. Safaryan, A. Krumes, D.-A. Alistarh, in:, 36th Conference on Neural Information Processing Systems, 2023.
[Published Version]
View
| Files available
| arXiv
M. Safaryan, A. Krumes, D.-A. Alistarh, in:, 36th Conference on Neural Information Processing Systems, 2023.
2023 | Published | Thesis | IST-REx-ID: 13074 |
Efficiency and generalization of sparse neural networks
A. Krumes, Efficiency and Generalization of Sparse Neural Networks, Institute of Science and Technology Austria, 2023.
[Published Version]
View
| Files available
| DOI
A. Krumes, Efficiency and Generalization of Sparse Neural Networks, Institute of Science and Technology Austria, 2023.
2023 | Published | Conference Paper | IST-REx-ID: 14771 |
Bias in pruned vision models: In-depth analysis and countermeasures
E.B. Iofinova, A. Krumes, D.-A. Alistarh, in:, 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2023, pp. 24364–24373.
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
E.B. Iofinova, A. Krumes, D.-A. Alistarh, in:, 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2023, pp. 24364–24373.
2023 | Published | Conference Paper | IST-REx-ID: 14461 |
Quantized distributed training of large models with convergence guarantees
I. Markov, A. Vladu, Q. Guo, D.-A. Alistarh, in:, Proceedings of the 40th International Conference on Machine Learning, ML Research Press, 2023, pp. 24020–24044.
[Preprint]
View
| Files available
| Download Preprint (ext.)
| arXiv
I. Markov, A. Vladu, Q. Guo, D.-A. Alistarh, in:, Proceedings of the 40th International Conference on Machine Learning, ML Research Press, 2023, pp. 24020–24044.
2023 | Published | Journal Article | IST-REx-ID: 14364 |
Why extension-based proofs fail
D.-A. Alistarh, J. Aspnes, F. Ellen, R. Gelashvili, L. Zhu, SIAM Journal on Computing 52 (2023) 913–944.
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
D.-A. Alistarh, J. Aspnes, F. Ellen, R. Gelashvili, L. Zhu, SIAM Journal on Computing 52 (2023) 913–944.
2023 | Published | Conference Paper | IST-REx-ID: 13262 |
Provably-efficient and internally-deterministic parallel Union-Find
A. Fedorov, D. Hashemi, G. Nadiradze, D.-A. Alistarh, in:, Proceedings of the 35th ACM Symposium on Parallelism in Algorithms and Architectures, Association for Computing Machinery, 2023, pp. 261–271.
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
A. Fedorov, D. Hashemi, G. Nadiradze, D.-A. Alistarh, in:, Proceedings of the 35th ACM Symposium on Parallelism in Algorithms and Architectures, Association for Computing Machinery, 2023, pp. 261–271.
2023 | Published | Conference Paper | IST-REx-ID: 14260 |
Lincheck: A practical framework for testing concurrent data structures on JVM
N. Koval, A. Fedorov, M. Sokolova, D. Tsitelov, D.-A. Alistarh, in:, 35th International Conference on Computer Aided Verification , Springer Nature, 2023, pp. 156–169.
[Published Version]
View
| Files available
| DOI
| WoS
N. Koval, A. Fedorov, M. Sokolova, D. Tsitelov, D.-A. Alistarh, in:, 35th International Conference on Computer Aided Verification , Springer Nature, 2023, pp. 156–169.
2023 | Research Data Reference | IST-REx-ID: 14995 |
Lincheck: A practical framework for testing concurrent data structures on JVM
N. Koval, A. Fedorov, M. Sokolova, D. Tsitelov, D.-A. Alistarh, (2023).
[Published Version]
View
| Files available
| DOI
| Download Published Version (ext.)
N. Koval, A. Fedorov, M. Sokolova, D. Tsitelov, D.-A. Alistarh, (2023).
2023 | Published | Book Chapter | IST-REx-ID: 19983 |
Sinkless Orientation Made Simple
A. Balliu, J. Korhonen, F. Kuhn, H. Lievonen, D. Olivetti, S. Pai, A. Paz, J. Rybicki, S. Schmid, J. Studený, J. Suomela, J. Uitto, in:, Symposium on Simplicity in Algorithms, 2023 Society for Industrial and Applied Mathematics, 2023, pp. 175–191.
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
A. Balliu, J. Korhonen, F. Kuhn, H. Lievonen, D. Olivetti, S. Pai, A. Paz, J. Rybicki, S. Schmid, J. Studený, J. Suomela, J. Uitto, in:, Symposium on Simplicity in Algorithms, 2023 Society for Industrial and Applied Mathematics, 2023, pp. 175–191.
2023 | Published | Conference Paper | IST-REx-ID: 14459 |
Fundamental limits of two-layer autoencoders, and achieving them with gradient methods
A. Shevchenko, K. Kögler, H. Hassani, M. Mondelli, in:, Proceedings of the 40th International Conference on Machine Learning, ML Research Press, 2023, pp. 31151–31209.
[Preprint]
View
| Files available
| Download Preprint (ext.)
| arXiv
A. Shevchenko, K. Kögler, H. Hassani, M. Mondelli, in:, Proceedings of the 40th International Conference on Machine Learning, ML Research Press, 2023, pp. 31151–31209.
2022 | Published | Conference Paper | IST-REx-ID: 11181 |
PathCAS: An efficient middle ground for concurrent search data structures
T.A. Brown, W. Sigouin, D.-A. Alistarh, in:, Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Association for Computing Machinery, 2022, pp. 385–399.
[Published Version]
View
| Files available
| DOI
| WoS
T.A. Brown, W. Sigouin, D.-A. Alistarh, in:, Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Association for Computing Machinery, 2022, pp. 385–399.
2022 | Published | Conference Paper | IST-REx-ID: 17088 |
The optimal BERT surgeon: Scalable and accurate second-order pruning for large language models
E. Kurtic, D. Campos, T. Nguyen, E. Frantar, M. Kurtz, B. Fineran, M. Goin, D.-A. Alistarh, in:, Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, 2022, pp. 4163–4181.
[Published Version]
View
| Files available
| DOI
| arXiv
E. Kurtic, D. Campos, T. Nguyen, E. Frantar, M. Kurtz, B. Fineran, M. Goin, D.-A. Alistarh, in:, Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, 2022, pp. 4163–4181.
2022 | Published | Conference Paper | IST-REx-ID: 12182 |
Brief announcement: Temporal locality in online algorithms
M. Pacut, M. Parham, J. Rybicki, S. Schmid, J. Suomela, A. Tereshchenko, in:, 36th International Symposium on Distributed Computing, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
[Published Version]
View
| Files available
| DOI
M. Pacut, M. Parham, J. Rybicki, S. Schmid, J. Suomela, A. Tereshchenko, in:, 36th International Symposium on Distributed Computing, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
2022 | Published | Conference Paper | IST-REx-ID: 11707 |
Local mending
A. Balliu, J. Hirvonen, D. Melnyk, D. Olivetti, J. Rybicki, J. Suomela, in:, M. Parter (Ed.), International Colloquium on Structural Information and Communication Complexity, Springer Nature, 2022, pp. 1–20.
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
A. Balliu, J. Hirvonen, D. Melnyk, D. Olivetti, J. Rybicki, J. Suomela, in:, M. Parter (Ed.), International Colloquium on Structural Information and Communication Complexity, Springer Nature, 2022, pp. 1–20.
2022 | Published | Conference Paper | IST-REx-ID: 11183 |
Beyond distributed subgraph detection: Induced subgraphs, multicolored problems and graph parameters
A. Nikabadi, J. Korhonen, in:, Q. Bramas, V. Gramoli, A. Milani (Eds.), 25th International Conference on Principles of Distributed Systems, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
[Published Version]
View
| Files available
| DOI
A. Nikabadi, J. Korhonen, in:, Q. Bramas, V. Gramoli, A. Milani (Eds.), 25th International Conference on Principles of Distributed Systems, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
2022 | Published | Conference Paper | IST-REx-ID: 11180 |
Multi-queues can be state-of-the-art priority schedulers
A. Postnikova, N. Koval, G. Nadiradze, D.-A. Alistarh, in:, Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Association for Computing Machinery, 2022, pp. 353–367.
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
A. Postnikova, N. Koval, G. Nadiradze, D.-A. Alistarh, in:, Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Association for Computing Machinery, 2022, pp. 353–367.
2022 | Research Data Reference | IST-REx-ID: 13076 |
Multi-queues can be state-of-the-art priority schedulers
A. Postnikova, N. Koval, G. Nadiradze, D.-A. Alistarh, (2022).
[Published Version]
View
| Files available
| DOI
| Download Published Version (ext.)
A. Postnikova, N. Koval, G. Nadiradze, D.-A. Alistarh, (2022).
2022 | Published | Conference Paper | IST-REx-ID: 17087 |
Optimal brain compression: A framework for accurate post-training quantization and pruning
E. Frantar, S.P. Singh, D.-A. Alistarh, in:, 36th Conference on Neural Information Processing Systems, ML Research Press, 2022.
[Submitted Version]
View
| Files available
| arXiv
E. Frantar, S.P. Singh, D.-A. Alistarh, in:, 36th Conference on Neural Information Processing Systems, ML Research Press, 2022.
2022 | Published | Conference Paper | IST-REx-ID: 17059 |
SPDY: Accurate pruning with speedup guarantees
E. Frantar, D.-A. Alistarh, in:, 39th International Conference on Machine Learning, ML Research Press, 2022, pp. 6726–6743.
[Published Version]
View
| Files available
| WoS
E. Frantar, D.-A. Alistarh, in:, 39th International Conference on Machine Learning, ML Research Press, 2022, pp. 6726–6743.