Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.




138 Publications

2023 |Published| Journal Article | IST-REx-ID: 14815 | OA
On biased compression for distributed learning
A. Beznosikov, S. Horvath, P. Richtarik, M. Safaryan, Journal of Machine Learning Research 24 (2023) 1–50.
[Published Version] View | Files available | WoS | arXiv
 
2023 |Published| Conference Paper | IST-REx-ID: 14260 | OA
Lincheck: A practical framework for testing concurrent data structures on JVM
N. Koval, A. Fedorov, M. Sokolova, D. Tsitelov, D.-A. Alistarh, in:, 35th International Conference on Computer Aided Verification , Springer Nature, 2023, pp. 156–169.
[Published Version] View | Files available | DOI
 
2023 | Research Data Reference | IST-REx-ID: 14995 | OA
Lincheck: A practical framework for testing concurrent data structures on JVM
N. Koval, A. Fedorov, M. Sokolova, D. Tsitelov, D.-A. Alistarh, (2023).
[Published Version] View | Files available | DOI | Download Published Version (ext.)
 
2023 |Published| Conference Paper | IST-REx-ID: 13262 | OA
Provably-efficient and internally-deterministic parallel Union-Find
A. Fedorov, D. Hashemi, G. Nadiradze, D.-A. Alistarh, in:, Proceedings of the 35th ACM Symposium on Parallelism in Algorithms and Architectures, Association for Computing Machinery, 2023, pp. 261–271.
[Published Version] View | Files available | DOI | arXiv
 
2023 |Published| Conference Paper | IST-REx-ID: 15363 | OA
Knowledge distillation performs partial variance reduction
M. Safaryan, A. Krumes, D.-A. Alistarh, in:, 36th Conference on Neural Information Processing Systems, 2023.
[Published Version] View | Files available | arXiv
 
2023 |Published| Thesis | IST-REx-ID: 13074 | OA
Efficiency and generalization of sparse neural networks
E.-A. Peste, Efficiency and Generalization of Sparse Neural Networks, Institute of Science and Technology Austria, 2023.
[Published Version] View | Files available | DOI
 
2023 |Published| Conference Paper | IST-REx-ID: 13053 | OA
CrAM: A Compression-Aware Minimizer
A. Krumes, A. Vladu, E. Kurtic, C. Lampert, D.-A. Alistarh, in:, 11th International Conference on Learning Representations , OpenReview, 2023.
[Published Version] View | Files available | Download Published Version (ext.) | arXiv
 
2023 |Published| Conference Paper | IST-REx-ID: 14459 | OA
Fundamental limits of two-layer autoencoders, and achieving them with gradient methods
A. Shevchenko, K. Kögler, H. Hassani, M. Mondelli, in:, Proceedings of the 40th International Conference on Machine Learning, ML Research Press, 2023, pp. 31151–31209.
[Preprint] View | Files available | Download Preprint (ext.) | arXiv
 
2023 |Published| Conference Paper | IST-REx-ID: 14461 | OA
Quantized distributed training of large models with convergence guarantees
I. Markov, A. Vladu, Q. Guo, D.-A. Alistarh, in:, Proceedings of the 40th International Conference on Machine Learning, ML Research Press, 2023, pp. 24020–24044.
[Preprint] View | Files available | Download Preprint (ext.) | arXiv
 
2023 |Published| Conference Paper | IST-REx-ID: 17378 | OA
OPTQ: Accurate post-training quantization for generative pre-trained transformers
E. Frantar, S. Ashkboos, T. Hoefler, D.-A. Alistarh, in:, 11th International Conference on Learning Representations , International Conference on Learning Representations, 2023.
[Published Version] View | Files available
 
2023 |Published| Conference Paper | IST-REx-ID: 14458 | OA
SparseGPT: Massive language models can be accurately pruned in one-shot
E. Frantar, D.-A. Alistarh, in:, Proceedings of the 40th International Conference on Machine Learning, ML Research Press, 2023, pp. 10323–10337.
[Preprint] View | Files available | Download Preprint (ext.) | arXiv
 
2022 |Published| Conference Paper | IST-REx-ID: 11184 | OA
Fast graphical population protocols
D.-A. Alistarh, R. Gelashvili, J. Rybicki, in:, Q. Bramas, V. Gramoli, A. Milani (Eds.), 25th International Conference on Principles of Distributed Systems, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
[Published Version] View | Files available | DOI | arXiv
 
2022 |Published| Conference Paper | IST-REx-ID: 11183 | OA
Beyond distributed subgraph detection: Induced subgraphs, multicolored problems and graph parameters
A. Nikabadi, J. Korhonen, in:, Q. Bramas, V. Gramoli, A. Milani (Eds.), 25th International Conference on Principles of Distributed Systems, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
[Published Version] View | Files available | DOI
 
2022 |Published| Conference Paper | IST-REx-ID: 12182 | OA
Brief announcement: Temporal locality in online algorithms
M. Pacut, M. Parham, J. Rybicki, S. Schmid, J. Suomela, A. Tereshchenko, in:, 36th International Symposium on Distributed Computing, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
[Published Version] View | Files available | DOI
 
2022 |Published| Conference Paper | IST-REx-ID: 11844 | OA
Near-optimal leader election in population protocols on graphs
D.-A. Alistarh, J. Rybicki, S. Voitovych, in:, Proceedings of the Annual ACM Symposium on Principles of Distributed Computing, Association for Computing Machinery, 2022, pp. 246–256.
[Published Version] View | Files available | DOI | arXiv
 
2022 |Published| Conference Paper | IST-REx-ID: 11181 | OA
PathCAS: An efficient middle ground for concurrent search data structures
T.A. Brown, W. Sigouin, D.-A. Alistarh, in:, Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Association for Computing Machinery, 2022, pp. 385–399.
[Published Version] View | Files available | DOI | WoS
 
2022 |Published| Conference Paper | IST-REx-ID: 11180 | OA
Multi-queues can be state-of-the-art priority schedulers
A. Postnikova, N. Koval, G. Nadiradze, D.-A. Alistarh, in:, Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Association for Computing Machinery, 2022, pp. 353–367.
[Preprint] View | Files available | DOI | Download Preprint (ext.) | WoS | arXiv
 
2022 | Research Data Reference | IST-REx-ID: 13076 | OA
Multi-queues can be state-of-the-art priority schedulers
A. Postnikova, N. Koval, G. Nadiradze, D.-A. Alistarh, (2022).
[Published Version] View | Files available | DOI | Download Published Version (ext.)
 
2022 |Published| Conference Paper | IST-REx-ID: 11707 | OA
Local mending
A. Balliu, J. Hirvonen, D. Melnyk, D. Olivetti, J. Rybicki, J. Suomela, in:, M. Parter (Ed.), International Colloquium on Structural Information and Communication Complexity, Springer Nature, 2022, pp. 1–20.
[Preprint] View | DOI | Download Preprint (ext.) | WoS | arXiv
 
2022 |Published| Conference Paper | IST-REx-ID: 12299 | OA
How well do sparse ImageNet models transfer?
E.B. Iofinova, E.-A. Peste, M. Kurtz, D.-A. Alistarh, in:, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Institute of Electrical and Electronics Engineers, 2022, pp. 12256–12266.
[Preprint] View | Files available | DOI | Download Preprint (ext.) | WoS | arXiv
 

Search

Filter Publications