Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
88 Publications
- 1
- 2
- 3
- 4 (current)
- 5
2021 | Published | Conference Paper | IST-REx-ID: 14180 |

Rahaman, N., Gondal, M. W., Joshi, S., Gehler, P., Bengio, Y., Locatello, F., & Schölkopf, B. (2021). Dynamic inference with neural interpreters. In Advances in Neural Information Processing Systems (Vol. 34, pp. 10985–10998). Virtual.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2021 | Published | Conference Paper | IST-REx-ID: 14181 |

Dresdner, G., Shekhar, S., Pedregosa, F., Locatello, F., & Rätsch, G. (2021). Boosting variational inference with locally adaptive step-sizes. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (pp. 2337–2343). Montreal, Canada: International Joint Conferences on Artificial Intelligence. https://doi.org/10.24963/ijcai.2021/322
[Published Version]
View
| DOI
| Download Published Version (ext.)
| arXiv
2021 | Published | Conference Paper | IST-REx-ID: 14182 |

Träuble, F., Kügelgen, J. von, Kleindessner, M., Locatello, F., Schölkopf, B., & Gehler, P. (2021). Backward-compatible prediction updates: A probabilistic approach. In 35th Conference on Neural Information Processing Systems (Vol. 34, pp. 116–128). Virtual.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2021 | Submitted | Preprint | IST-REx-ID: 14221 |

Locatello, F. (n.d.). Enforcing and discovering structure in machine learning. arXiv. https://doi.org/10.48550/arXiv.2111.13693
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2021 | Published | Conference Paper | IST-REx-ID: 14332
Träuble, F., Dittadi, A., Wuthrich, M., Widmaier, F., Gehler, P. V., Winther, O., … Bauer, S. (2021). Representation learning for out-of-distribution generalization in reinforcement learning. In ICML 2021 Workshop on Unsupervised Reinforcement Learning. Virtual.
View
2021 | Patent | IST-REx-ID: 14185 |

Weissenborn, D., Uszkoreit, J., Unterthiner, T., Mahendran, A., Locatello, F., Kipf, T., … Dosovitskiy, A. (2021). Object-centric learning with slot attention.
[Published Version]
View
| Download Published Version (ext.)
| arXiv
2020 | Published | Journal Article | IST-REx-ID: 14125 |

Stark SG et al. 2020. SCIM: Universal single-cell matching with unpaired feature sets. Bioinformatics. 36(Supplement_2), i919–i927.
[Published Version]
View
| Files available
| DOI
| Download Published Version (ext.)
| PubMed | Europe PMC
2020 | Published | Conference Paper | IST-REx-ID: 14186 |

Locatello, F., Bauer, S., Lucic, M., Rätsch, G., Gelly, S., Schölkopf, B., & Bachem, O. (2020). A commentary on the unsupervised learning of disentangled representations. In The 34th AAAI Conference on Artificial Intelligence (Vol. 34, pp. 13681–13684). New York, NY, United States: Association for the Advancement of Artificial Intelligence. https://doi.org/10.1609/aaai.v34i09.7120
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2020 | Published | Conference Paper | IST-REx-ID: 14187 |

Négiar, G., Dresdner, G., Tsai, A., Ghaoui, L. E., Locatello, F., Freund, R. M., & Pedregosa, F. (2020). Stochastic Frank-Wolfe for constrained finite-sum minimization. In Proceedings of the 37th International Conference on Machine Learning (Vol. 119, pp. 7253–7262). Virtual.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2020 | Published | Conference Paper | IST-REx-ID: 14188 |

Locatello, F., Poole, B., Rätsch, G., Schölkopf, B., Bachem, O., & Tschannen, M. (2020). Weakly-supervised disentanglement without compromises. In Proceedings of the 37th International Conference on Machine Learning (Vol. 119, pp. 6348–6359). Virtual.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2020 | Published | Journal Article | IST-REx-ID: 14195 |

Locatello, F., Bauer, S., Lucic, M., Rätsch, G., Gelly, S., Schölkopf, B., & Bachem, O. (2020). A sober look at the unsupervised learning of disentangled representations and their evaluation. Journal of Machine Learning Research. MIT Press.
[Published Version]
View
| Download Published Version (ext.)
| arXiv
2020 | Published | Conference Paper | IST-REx-ID: 14326 |

Locatello, F., Weissenborn, D., Unterthiner, T., Mahendran, A., Heigold, G., Uszkoreit, J., … Kipf, T. (2020). Object-centric learning with slot attention. In 34th International Conference on Neural Information Processing Systems (Vol. 33, pp. 11525–11538). Virtual: Neural Information Processing Systems Foundation.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2019 | Published | Conference Paper | IST-REx-ID: 14184 |

Locatello, F., Tschannen, M., Bauer, S., Rätsch, G., Schölkopf, B., & Bachem, O. (2019). Disentangling factors of variation using few labels. In 8th International Conference on Learning Representations. Virtual.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2019 | Published | Conference Paper | IST-REx-ID: 14189 |

Gresele, L., Rubenstein, P. K., Mehrjou, A., Locatello, F., & Schölkopf, B. (2019). The incomplete Rosetta Stone problem: Identifiability results for multi-view nonlinear ICA. In Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence (Vol. 115, pp. 217–227). Tel Aviv, Israel: ML Research Press.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2019 | Published | Conference Paper | IST-REx-ID: 14190 |

Gondal, M. W., Wüthrich, M., Miladinović, Đ., Locatello, F., Breidt, M., Volchkov, V., … Bauer, S. (2019). On the transfer of inductive bias from simulation to the real world: a new disentanglement dataset. In Advances in Neural Information Processing Systems (Vol. 32). Vancouver, Canada.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2019 | Published | Conference Paper | IST-REx-ID: 14191 |

Locatello, F., Yurtsever, A., Fercoq, O., & Cevher, V. (2019). Stochastic Frank-Wolfe for composite convex minimization. In Advances in Neural Information Processing Systems (Vol. 32, pp. 14291–14301). Vancouver, Canada.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2019 | Published | Conference Paper | IST-REx-ID: 14193 |

Steenkiste, S. van, Locatello, F., Schmidhuber, J., & Bachem, O. (2019). Are disentangled representations helpful for abstract visual reasoning? In Advances in Neural Information Processing Systems (Vol. 32). Vancouver, Canada.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2019 | Published | Conference Paper | IST-REx-ID: 14197 |

Locatello, F., Abbati, G., Rainforth, T., Bauer, S., Schölkopf, B., & Bachem, O. (2019). On the fairness of disentangled representations. In Advances in Neural Information Processing Systems (Vol. 32, pp. 14611–14624). Vancouver, Canada.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2019 | Published | Conference Paper | IST-REx-ID: 14200 |

Locatello, F., Bauer, S., Lucic, M., Rätsch, G., Gelly, S., Schölkopf, B., & Bachem, O. (2019). Challenging common assumptions in the unsupervised learning of disentangled representations. In Proceedings of the 36th International Conference on Machine Learning (Vol. 97, pp. 4114–4124). Long Beach, CA, United States: ML Research Press.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2018 | Published | Conference Paper | IST-REx-ID: 14198 |

Fortuin, V., Hüser, M., Locatello, F., Strathmann, H., & Rätsch, G. (2018). SOM-VAE: Interpretable discrete representation learning on time series. In International Conference on Learning Representations. New Orleans, LA, United States.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
- 1
- 2
- 3
- 4 (current)
- 5