Dingling Yao
6 Publications
2025 | Published | Conference Paper | IST-REx-ID: 20032 |
Scalable mechanistic neural networks
J. Chen, D. Yao, A.A. Pervez, D.-A. Alistarh, F. Locatello, in:, 13th International Conference on Learning Representations, ICLR, 2025, pp. 63716–63737.
[Published Version]
View
| Files available
| arXiv
J. Chen, D. Yao, A.A. Pervez, D.-A. Alistarh, F. Locatello, in:, 13th International Conference on Learning Representations, ICLR, 2025, pp. 63716–63737.
2025 | Published | Conference Paper | IST-REx-ID: 20592 |
Propagating model uncertainty through filtering-based probabilistic numerical ODE solvers
D. Yao, F. Tronarp, N. Bosch, in:, Proceedings of the 1st International Conference on Probabilistic Numerics, ML Research Press, 2025.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
D. Yao, F. Tronarp, N. Bosch, in:, Proceedings of the 1st International Conference on Probabilistic Numerics, ML Research Press, 2025.
2024 | Published | Conference Paper | IST-REx-ID: 14946 |
Multi-view causal representation learning with partial observability
D. Yao, D. Xu, S. Lachapelle, S. Magliacane, P. Taslakian, G. Martius, J. von Kügelgen, F. Locatello, in:, 12th International Conference on Learning Representations, Curran Associates, 2024.
[Published Version]
View
| Files available
| arXiv
D. Yao, D. Xu, S. Lachapelle, S. Magliacane, P. Taslakian, G. Martius, J. von Kügelgen, F. Locatello, in:, 12th International Conference on Learning Representations, Curran Associates, 2024.
2024 | Published | Conference Paper | IST-REx-ID: 19010 |
Unifying causal representation learning with the invariance principle
D. Yao, D. Rancati, R. Cadei, M. Fumero, F. Locatello, in:, 38th Conference on Neural Information Processing Systems, Neural Information Processing Systems Foundation, 2024.
[Published Version]
View
| Files available
| arXiv
D. Yao, D. Rancati, R. Cadei, M. Fumero, F. Locatello, in:, 38th Conference on Neural Information Processing Systems, Neural Information Processing Systems Foundation, 2024.
2024 | Published | Conference Paper | IST-REx-ID: 19005 |
Marrying causal representation learning with dynamical systems for science
D. Yao, C.J. Muller, F. Locatello, in:, 38th Conference on Neural Information Processing Systems, Neural Information Processing Systems Foundation, 2024.
[Published Version]
View
| Files available
| arXiv
D. Yao, C.J. Muller, F. Locatello, in:, 38th Conference on Neural Information Processing Systems, Neural Information Processing Systems Foundation, 2024.
2023 | Published | Conference Paper | IST-REx-ID: 14958 |
A sparsity principle for partially observable causal representation learning
D. Xu, D. Yao, S. Lachapelle, P. Taslakian, J. von Kügelgen, F. Locatello, S. Magliacane, in:, Causal Representation Learning Workshop at NeurIPS 2023, OpenReview, 2023.
[Published Version]
View
| Files available
| Download Published Version (ext.)
D. Xu, D. Yao, S. Lachapelle, P. Taslakian, J. von Kügelgen, F. Locatello, S. Magliacane, in:, Causal Representation Learning Workshop at NeurIPS 2023, OpenReview, 2023.
Grants
6 Publications
2025 | Published | Conference Paper | IST-REx-ID: 20032 |
Scalable mechanistic neural networks
J. Chen, D. Yao, A.A. Pervez, D.-A. Alistarh, F. Locatello, in:, 13th International Conference on Learning Representations, ICLR, 2025, pp. 63716–63737.
[Published Version]
View
| Files available
| arXiv
J. Chen, D. Yao, A.A. Pervez, D.-A. Alistarh, F. Locatello, in:, 13th International Conference on Learning Representations, ICLR, 2025, pp. 63716–63737.
2025 | Published | Conference Paper | IST-REx-ID: 20592 |
Propagating model uncertainty through filtering-based probabilistic numerical ODE solvers
D. Yao, F. Tronarp, N. Bosch, in:, Proceedings of the 1st International Conference on Probabilistic Numerics, ML Research Press, 2025.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
D. Yao, F. Tronarp, N. Bosch, in:, Proceedings of the 1st International Conference on Probabilistic Numerics, ML Research Press, 2025.
2024 | Published | Conference Paper | IST-REx-ID: 14946 |
Multi-view causal representation learning with partial observability
D. Yao, D. Xu, S. Lachapelle, S. Magliacane, P. Taslakian, G. Martius, J. von Kügelgen, F. Locatello, in:, 12th International Conference on Learning Representations, Curran Associates, 2024.
[Published Version]
View
| Files available
| arXiv
D. Yao, D. Xu, S. Lachapelle, S. Magliacane, P. Taslakian, G. Martius, J. von Kügelgen, F. Locatello, in:, 12th International Conference on Learning Representations, Curran Associates, 2024.
2024 | Published | Conference Paper | IST-REx-ID: 19010 |
Unifying causal representation learning with the invariance principle
D. Yao, D. Rancati, R. Cadei, M. Fumero, F. Locatello, in:, 38th Conference on Neural Information Processing Systems, Neural Information Processing Systems Foundation, 2024.
[Published Version]
View
| Files available
| arXiv
D. Yao, D. Rancati, R. Cadei, M. Fumero, F. Locatello, in:, 38th Conference on Neural Information Processing Systems, Neural Information Processing Systems Foundation, 2024.
2024 | Published | Conference Paper | IST-REx-ID: 19005 |
Marrying causal representation learning with dynamical systems for science
D. Yao, C.J. Muller, F. Locatello, in:, 38th Conference on Neural Information Processing Systems, Neural Information Processing Systems Foundation, 2024.
[Published Version]
View
| Files available
| arXiv
D. Yao, C.J. Muller, F. Locatello, in:, 38th Conference on Neural Information Processing Systems, Neural Information Processing Systems Foundation, 2024.
2023 | Published | Conference Paper | IST-REx-ID: 14958 |
A sparsity principle for partially observable causal representation learning
D. Xu, D. Yao, S. Lachapelle, P. Taslakian, J. von Kügelgen, F. Locatello, S. Magliacane, in:, Causal Representation Learning Workshop at NeurIPS 2023, OpenReview, 2023.
[Published Version]
View
| Files available
| Download Published Version (ext.)
D. Xu, D. Yao, S. Lachapelle, P. Taslakian, J. von Kügelgen, F. Locatello, S. Magliacane, in:, Causal Representation Learning Workshop at NeurIPS 2023, OpenReview, 2023.