Dingling Yao
Graduate School
Locatello Group
4 Publications
2024 | Published | Conference Paper | IST-REx-ID: 19010 |

Unifying causal representation learning with the invariance principle
D. Yao, D. Rancati, R. Cadei, M. Fumero, F. Locatello, in:, 38th Conference on Neural Information Processing Systems, Curran Associates, 2024.
[Published Version]
View
| Files available
| arXiv
D. Yao, D. Rancati, R. Cadei, M. Fumero, F. Locatello, in:, 38th Conference on Neural Information Processing Systems, Curran Associates, 2024.
2024 | Published | Conference Paper | IST-REx-ID: 19005 |

Marrying causal representation learning with dynamical systems for science
D. Yao, C.J. Muller, F. Locatello, in:, 38th Conference on Neural Information Processing Systems, Curran Associates, 2024.
[Published Version]
View
| Files available
| arXiv
D. Yao, C.J. Muller, F. Locatello, in:, 38th Conference on Neural Information Processing Systems, Curran Associates, 2024.
2024 | Published | Conference Paper | IST-REx-ID: 14946 |

Multi-view causal representation learning with partial observability
D. Yao, D. Xu, S. Lachapelle, S. Magliacane, P. Taslakian, G. Martius, J. von Kügelgen, F. Locatello, in:, 12th International Conference on Learning Representations, Curran Associates, 2024.
[Published Version]
View
| Files available
| arXiv
D. Yao, D. Xu, S. Lachapelle, S. Magliacane, P. Taslakian, G. Martius, J. von Kügelgen, F. Locatello, in:, 12th International Conference on Learning Representations, Curran Associates, 2024.
2023 | Published | Conference Paper | IST-REx-ID: 14958 |

A sparsity principle for partially observable causal representation learning
D. Xu, D. Yao, S. Lachapelle, P. Taslakian, J. von Kügelgen, F. Locatello, S. Magliacane, in:, Causal Representation Learning Workshop at NeurIPS 2023, OpenReview, 2023.
[Published Version]
View
| Files available
| Download Published Version (ext.)
D. Xu, D. Yao, S. Lachapelle, P. Taslakian, J. von Kügelgen, F. Locatello, S. Magliacane, in:, Causal Representation Learning Workshop at NeurIPS 2023, OpenReview, 2023.
Grants
4 Publications
2024 | Published | Conference Paper | IST-REx-ID: 19010 |

Unifying causal representation learning with the invariance principle
D. Yao, D. Rancati, R. Cadei, M. Fumero, F. Locatello, in:, 38th Conference on Neural Information Processing Systems, Curran Associates, 2024.
[Published Version]
View
| Files available
| arXiv
D. Yao, D. Rancati, R. Cadei, M. Fumero, F. Locatello, in:, 38th Conference on Neural Information Processing Systems, Curran Associates, 2024.
2024 | Published | Conference Paper | IST-REx-ID: 19005 |

Marrying causal representation learning with dynamical systems for science
D. Yao, C.J. Muller, F. Locatello, in:, 38th Conference on Neural Information Processing Systems, Curran Associates, 2024.
[Published Version]
View
| Files available
| arXiv
D. Yao, C.J. Muller, F. Locatello, in:, 38th Conference on Neural Information Processing Systems, Curran Associates, 2024.
2024 | Published | Conference Paper | IST-REx-ID: 14946 |

Multi-view causal representation learning with partial observability
D. Yao, D. Xu, S. Lachapelle, S. Magliacane, P. Taslakian, G. Martius, J. von Kügelgen, F. Locatello, in:, 12th International Conference on Learning Representations, Curran Associates, 2024.
[Published Version]
View
| Files available
| arXiv
D. Yao, D. Xu, S. Lachapelle, S. Magliacane, P. Taslakian, G. Martius, J. von Kügelgen, F. Locatello, in:, 12th International Conference on Learning Representations, Curran Associates, 2024.
2023 | Published | Conference Paper | IST-REx-ID: 14958 |

A sparsity principle for partially observable causal representation learning
D. Xu, D. Yao, S. Lachapelle, P. Taslakian, J. von Kügelgen, F. Locatello, S. Magliacane, in:, Causal Representation Learning Workshop at NeurIPS 2023, OpenReview, 2023.
[Published Version]
View
| Files available
| Download Published Version (ext.)
D. Xu, D. Yao, S. Lachapelle, P. Taslakian, J. von Kügelgen, F. Locatello, S. Magliacane, in:, Causal Representation Learning Workshop at NeurIPS 2023, OpenReview, 2023.