Johannes Alt
Erdoes Group
10 Publications
2021 | Published | Journal Article | IST-REx-ID: 15013 |

Alt, J., Erdös, L., & Krüger, T. H. (2021). Spectral radius of random matrices with independent entries. Probability and Mathematical Physics. Mathematical Sciences Publishers. https://doi.org/10.2140/pmp.2021.2.221
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2020 | Published | Journal Article | IST-REx-ID: 6184 |

Alt, J., Erdös, L., Krüger, T. H., & Schröder, D. J. (2020). Correlated random matrices: Band rigidity and edge universality. Annals of Probability. Institute of Mathematical Statistics. https://doi.org/10.1214/19-AOP1379
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2020 | Published | Journal Article | IST-REx-ID: 14694 |

Alt, J., Erdös, L., & Krüger, T. H. (2020). The Dyson equation with linear self-energy: Spectral bands, edges and cusps. Documenta Mathematica. EMS Press. https://doi.org/10.4171/dm/780
[Published Version]
View
| Files available
| DOI
| arXiv
2019 | Published | Journal Article | IST-REx-ID: 6240 |

Alt, J., Erdös, L., Krüger, T. H., & Nemish, Y. (2019). Location of the spectrum of Kronecker random matrices. Annales de l’institut Henri Poincare. Institut Henri Poincaré. https://doi.org/10.1214/18-AIHP894
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2018 | Published | Journal Article | IST-REx-ID: 566 |

Alt, J., Erdös, L., & Krüger, T. H. (2018). Local inhomogeneous circular law. Annals Applied Probability . Institute of Mathematical Statistics. https://doi.org/10.1214/17-AAP1302
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2018 | Published | Thesis | IST-REx-ID: 149 |

Alt, J. (2018). Dyson equation and eigenvalue statistics of random matrices. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:TH_1040
[Published Version]
View
| Files available
| DOI
2018 | Draft | Preprint | IST-REx-ID: 6183 |

Alt, J., Erdös, L., & Krüger, T. H. (n.d.). The Dyson equation with linear self-energy: Spectral bands, edges and cusps. arXiv. https://doi.org/10.48550/arXiv.1804.07752
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
2017 | Published | Journal Article | IST-REx-ID: 1010 |

Alt, J., Erdös, L., & Krüger, T. H. (2017). Local law for random Gram matrices. Electronic Journal of Probability. Institute of Mathematical Statistics. https://doi.org/10.1214/17-EJP42
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2017 | Published | Journal Article | IST-REx-ID: 550 |

Alt, J. (2017). Singularities of the density of states of random Gram matrices. Electronic Communications in Probability. Institute of Mathematical Statistics. https://doi.org/10.1214/17-ECP97
[Published Version]
View
| Files available
| DOI
2015 | Published | Journal Article | IST-REx-ID: 1677 |

Alt, J. (2015). The local semicircle law for random matrices with a fourfold symmetry. Journal of Mathematical Physics. American Institute of Physics. https://doi.org/10.1063/1.4932606
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
Grants
10 Publications
2021 | Published | Journal Article | IST-REx-ID: 15013 |

Alt, J., Erdös, L., & Krüger, T. H. (2021). Spectral radius of random matrices with independent entries. Probability and Mathematical Physics. Mathematical Sciences Publishers. https://doi.org/10.2140/pmp.2021.2.221
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2020 | Published | Journal Article | IST-REx-ID: 6184 |

Alt, J., Erdös, L., Krüger, T. H., & Schröder, D. J. (2020). Correlated random matrices: Band rigidity and edge universality. Annals of Probability. Institute of Mathematical Statistics. https://doi.org/10.1214/19-AOP1379
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2020 | Published | Journal Article | IST-REx-ID: 14694 |

Alt, J., Erdös, L., & Krüger, T. H. (2020). The Dyson equation with linear self-energy: Spectral bands, edges and cusps. Documenta Mathematica. EMS Press. https://doi.org/10.4171/dm/780
[Published Version]
View
| Files available
| DOI
| arXiv
2019 | Published | Journal Article | IST-REx-ID: 6240 |

Alt, J., Erdös, L., Krüger, T. H., & Nemish, Y. (2019). Location of the spectrum of Kronecker random matrices. Annales de l’institut Henri Poincare. Institut Henri Poincaré. https://doi.org/10.1214/18-AIHP894
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2018 | Published | Journal Article | IST-REx-ID: 566 |

Alt, J., Erdös, L., & Krüger, T. H. (2018). Local inhomogeneous circular law. Annals Applied Probability . Institute of Mathematical Statistics. https://doi.org/10.1214/17-AAP1302
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2018 | Published | Thesis | IST-REx-ID: 149 |

Alt, J. (2018). Dyson equation and eigenvalue statistics of random matrices. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:TH_1040
[Published Version]
View
| Files available
| DOI
2018 | Draft | Preprint | IST-REx-ID: 6183 |

Alt, J., Erdös, L., & Krüger, T. H. (n.d.). The Dyson equation with linear self-energy: Spectral bands, edges and cusps. arXiv. https://doi.org/10.48550/arXiv.1804.07752
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
2017 | Published | Journal Article | IST-REx-ID: 1010 |

Alt, J., Erdös, L., & Krüger, T. H. (2017). Local law for random Gram matrices. Electronic Journal of Probability. Institute of Mathematical Statistics. https://doi.org/10.1214/17-EJP42
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2017 | Published | Journal Article | IST-REx-ID: 550 |

Alt, J. (2017). Singularities of the density of states of random Gram matrices. Electronic Communications in Probability. Institute of Mathematical Statistics. https://doi.org/10.1214/17-ECP97
[Published Version]
View
| Files available
| DOI
2015 | Published | Journal Article | IST-REx-ID: 1677 |

Alt, J. (2015). The local semicircle law for random matrices with a fourfold symmetry. Journal of Mathematical Physics. American Institute of Physics. https://doi.org/10.1063/1.4932606
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)