Grzegorz Jablonski
Edelsbrunner Group
5 Publications
2021 | Published | Journal Article | IST-REx-ID: 9821 |

Graff, G., Graff, B., Pilarczyk, P., Jablonski, G., Gąsecki, D., & Narkiewicz, K. (2021). Persistent homology as a new method of the assessment of heart rate variability. PLoS ONE. Public Library of Science. https://doi.org/10.1371/journal.pone.0253851
[Published Version]
View
| Files available
| DOI
| WoS
| PubMed | Europe PMC
2020 | Published | Conference Paper | IST-REx-ID: 8580
Graff, G., Graff, B., Jablonski, G., & Narkiewicz, K. (2020). The application of persistent homology in the analysis of heart rate variability. In 11th Conference of the European Study Group on Cardiovascular Oscillations: Computation and Modelling in Physiology: New Challenges and Opportunities, . Pisa, Italy: IEEE. https://doi.org/10.1109/ESGCO49734.2020.9158054
View
| DOI
| WoS
2020 | Published | Journal Article | IST-REx-ID: 15064 |

Bauer, U., Edelsbrunner, H., Jablonski, G., & Mrozek, M. (2020). Čech-Delaunay gradient flow and homology inference for self-maps. Journal of Applied and Computational Topology. Springer Nature. https://doi.org/10.1007/s41468-020-00058-8
[Published Version]
View
| Files available
| DOI
2017 | Published | Conference Paper | IST-REx-ID: 836
Ethier, M., Jablonski, G., & Mrozek, M. (2017). Finding eigenvalues of self-maps with the Kronecker canonical form. In Special Sessions in Applications of Computer Algebra (Vol. 198, pp. 119–136). Kalamata, Greece: Springer. https://doi.org/10.1007/978-3-319-56932-1_8
View
| DOI
| WoS
2015 | Published | Journal Article | IST-REx-ID: 2035 |

Edelsbrunner, H., Jablonski, G., & Mrozek, M. (2015). The persistent homology of a self-map. Foundations of Computational Mathematics. Springer. https://doi.org/10.1007/s10208-014-9223-y
[Published Version]
View
| Files available
| DOI
Grants
5 Publications
2021 | Published | Journal Article | IST-REx-ID: 9821 |

Graff, G., Graff, B., Pilarczyk, P., Jablonski, G., Gąsecki, D., & Narkiewicz, K. (2021). Persistent homology as a new method of the assessment of heart rate variability. PLoS ONE. Public Library of Science. https://doi.org/10.1371/journal.pone.0253851
[Published Version]
View
| Files available
| DOI
| WoS
| PubMed | Europe PMC
2020 | Published | Conference Paper | IST-REx-ID: 8580
Graff, G., Graff, B., Jablonski, G., & Narkiewicz, K. (2020). The application of persistent homology in the analysis of heart rate variability. In 11th Conference of the European Study Group on Cardiovascular Oscillations: Computation and Modelling in Physiology: New Challenges and Opportunities, . Pisa, Italy: IEEE. https://doi.org/10.1109/ESGCO49734.2020.9158054
View
| DOI
| WoS
2020 | Published | Journal Article | IST-REx-ID: 15064 |

Bauer, U., Edelsbrunner, H., Jablonski, G., & Mrozek, M. (2020). Čech-Delaunay gradient flow and homology inference for self-maps. Journal of Applied and Computational Topology. Springer Nature. https://doi.org/10.1007/s41468-020-00058-8
[Published Version]
View
| Files available
| DOI
2017 | Published | Conference Paper | IST-REx-ID: 836
Ethier, M., Jablonski, G., & Mrozek, M. (2017). Finding eigenvalues of self-maps with the Kronecker canonical form. In Special Sessions in Applications of Computer Algebra (Vol. 198, pp. 119–136). Kalamata, Greece: Springer. https://doi.org/10.1007/978-3-319-56932-1_8
View
| DOI
| WoS
2015 | Published | Journal Article | IST-REx-ID: 2035 |

Edelsbrunner, H., Jablonski, G., & Mrozek, M. (2015). The persistent homology of a self-map. Foundations of Computational Mathematics. Springer. https://doi.org/10.1007/s10208-014-9223-y
[Published Version]
View
| Files available
| DOI