Jan Reininghaus
Edelsbrunner Group
10 Publications
2016 | Published | Journal Article | IST-REx-ID: 1216 |

Kasten, Jens, Jan Reininghaus, Ingrid Hotz, Hans Hege, Bernd Noack, Guillaume Daviller, and Marek Morzyński. “Acceleration Feature Points of Unsteady Shear Flows.” Archives of Mechanics. Polish Academy of Sciences Publishing House, 2016.
[Published Version]
View
| Download Published Version (ext.)
2015 | Published | Conference Paper | IST-REx-ID: 1483 |

Reininghaus, Jan, Stefan Huber, Ulrich Bauer, and Roland Kwitt. “A Stable Multi-Scale Kernel for Topological Machine Learning,” 4741–48. IEEE, 2015. https://doi.org/10.1109/CVPR.2015.7299106.
[Preprint]
View
| DOI
| Download Preprint (ext.)
2015 | Published | Book Chapter | IST-REx-ID: 1531
Zobel, Valentin, Jan Reininghaus, and Ingrid Hotz. “Visualizing Symmetric Indefinite 2D Tensor Fields Using The Heat Kernel Signature.” In Visualization and Processing of Higher Order Descriptors for Multi-Valued Data, edited by Ingrid Hotz and Thomas Schultz, 1st ed., 40:257–67. Springer, 2015. https://doi.org/10.1007/978-3-319-15090-1_13.
View
| DOI
2014 | Published | Conference Paper | IST-REx-ID: 10886
Zobel, Valentin, Jan Reininghaus, and Ingrid Hotz. “Visualization of Two-Dimensional Symmetric Positive Definite Tensor Fields Using the Heat Kernel Signature.” In Topological Methods in Data Analysis and Visualization III , 249–62. Springer, 2014. https://doi.org/10.1007/978-3-319-04099-8_16.
View
| DOI
2014 | Published | Journal Article | IST-REx-ID: 1930
Günther, David, Alec Jacobson, Jan Reininghaus, Hans Seidel, Olga Sorkine Hornung, and Tino Weinkauf. “Fast and Memory-Efficient Topological Denoising of 2D and 3D Scalar Fields.” IEEE Transactions on Visualization and Computer Graphics. IEEE, 2014. https://doi.org/10.1109/TVCG.2014.2346432.
View
| DOI
2014 | Published | Conference Paper | IST-REx-ID: 2043 |

Bauer, Ulrich, Distributed computation of persistent homology. Proceedings of the Workshop on Algorithm Engineering and Experiments. 2014
[Submitted Version]
View
| DOI
| Download Submitted Version (ext.)
2014 | Published | Book Chapter | IST-REx-ID: 10817
Günther, David, Jan Reininghaus, Hans-Peter Seidel, and Tino Weinkauf. “Notes on the Simplification of the Morse-Smale Complex.” In Topological Methods in Data Analysis and Visualization III., edited by Peer-Timo Bremer, Ingrid Hotz, Valerio Pascucci, and Ronald Peikert, 135–50. Mathematics and Visualization. Cham: Springer Nature, 2014. https://doi.org/10.1007/978-3-319-04099-8_9.
View
| DOI
2014 | Published | Conference Paper | IST-REx-ID: 10894
Bauer, Ulrich, Michael Kerber, Jan Reininghaus, and Hubert Wagner. “PHAT – Persistent Homology Algorithms Toolbox.” In ICMS 2014: International Congress on Mathematical Software, 8592:137–43. LNCS. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. https://doi.org/10.1007/978-3-662-44199-2_24.
View
| Files available
| DOI
2014 | Published | Book Chapter | IST-REx-ID: 10893
Kasten, Jens, Jan Reininghaus, Wieland Reich, and Gerik Scheuermann. “Toward the Extraction of Saddle Periodic Orbits.” In Topological Methods in Data Analysis and Visualization III , edited by Peer-Timo Bremer, Ingrid Hotz, Valerio Pascucci, and Ronald Peikert, 1:55–69. Mathematics and Visualization. Cham: Springer, 2014. https://doi.org/10.1007/978-3-319-04099-8_4.
View
| DOI
2014 | Published | Book Chapter | IST-REx-ID: 2044 |

Bauer, Ulrich, Michael Kerber, and Jan Reininghaus. “Clear and Compress: Computing Persistent Homology in Chunks.” In Topological Methods in Data Analysis and Visualization III, edited by Peer-Timo Bremer, Ingrid Hotz, Valerio Pascucci, and Ronald Peikert, 103–17. Mathematics and Visualization. Springer, 2014. https://doi.org/10.1007/978-3-319-04099-8_7.
[Submitted Version]
View
| DOI
| Download Submitted Version (ext.)
Search
Filter Publications
Display / Sort
Export / Embed
Grants
10 Publications
2016 | Published | Journal Article | IST-REx-ID: 1216 |

Kasten, Jens, Jan Reininghaus, Ingrid Hotz, Hans Hege, Bernd Noack, Guillaume Daviller, and Marek Morzyński. “Acceleration Feature Points of Unsteady Shear Flows.” Archives of Mechanics. Polish Academy of Sciences Publishing House, 2016.
[Published Version]
View
| Download Published Version (ext.)
2015 | Published | Conference Paper | IST-REx-ID: 1483 |

Reininghaus, Jan, Stefan Huber, Ulrich Bauer, and Roland Kwitt. “A Stable Multi-Scale Kernel for Topological Machine Learning,” 4741–48. IEEE, 2015. https://doi.org/10.1109/CVPR.2015.7299106.
[Preprint]
View
| DOI
| Download Preprint (ext.)
2015 | Published | Book Chapter | IST-REx-ID: 1531
Zobel, Valentin, Jan Reininghaus, and Ingrid Hotz. “Visualizing Symmetric Indefinite 2D Tensor Fields Using The Heat Kernel Signature.” In Visualization and Processing of Higher Order Descriptors for Multi-Valued Data, edited by Ingrid Hotz and Thomas Schultz, 1st ed., 40:257–67. Springer, 2015. https://doi.org/10.1007/978-3-319-15090-1_13.
View
| DOI
2014 | Published | Conference Paper | IST-REx-ID: 10886
Zobel, Valentin, Jan Reininghaus, and Ingrid Hotz. “Visualization of Two-Dimensional Symmetric Positive Definite Tensor Fields Using the Heat Kernel Signature.” In Topological Methods in Data Analysis and Visualization III , 249–62. Springer, 2014. https://doi.org/10.1007/978-3-319-04099-8_16.
View
| DOI
2014 | Published | Journal Article | IST-REx-ID: 1930
Günther, David, Alec Jacobson, Jan Reininghaus, Hans Seidel, Olga Sorkine Hornung, and Tino Weinkauf. “Fast and Memory-Efficient Topological Denoising of 2D and 3D Scalar Fields.” IEEE Transactions on Visualization and Computer Graphics. IEEE, 2014. https://doi.org/10.1109/TVCG.2014.2346432.
View
| DOI
2014 | Published | Conference Paper | IST-REx-ID: 2043 |

Bauer, Ulrich, Distributed computation of persistent homology. Proceedings of the Workshop on Algorithm Engineering and Experiments. 2014
[Submitted Version]
View
| DOI
| Download Submitted Version (ext.)
2014 | Published | Book Chapter | IST-REx-ID: 10817
Günther, David, Jan Reininghaus, Hans-Peter Seidel, and Tino Weinkauf. “Notes on the Simplification of the Morse-Smale Complex.” In Topological Methods in Data Analysis and Visualization III., edited by Peer-Timo Bremer, Ingrid Hotz, Valerio Pascucci, and Ronald Peikert, 135–50. Mathematics and Visualization. Cham: Springer Nature, 2014. https://doi.org/10.1007/978-3-319-04099-8_9.
View
| DOI
2014 | Published | Conference Paper | IST-REx-ID: 10894
Bauer, Ulrich, Michael Kerber, Jan Reininghaus, and Hubert Wagner. “PHAT – Persistent Homology Algorithms Toolbox.” In ICMS 2014: International Congress on Mathematical Software, 8592:137–43. LNCS. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. https://doi.org/10.1007/978-3-662-44199-2_24.
View
| Files available
| DOI
2014 | Published | Book Chapter | IST-REx-ID: 10893
Kasten, Jens, Jan Reininghaus, Wieland Reich, and Gerik Scheuermann. “Toward the Extraction of Saddle Periodic Orbits.” In Topological Methods in Data Analysis and Visualization III , edited by Peer-Timo Bremer, Ingrid Hotz, Valerio Pascucci, and Ronald Peikert, 1:55–69. Mathematics and Visualization. Cham: Springer, 2014. https://doi.org/10.1007/978-3-319-04099-8_4.
View
| DOI
2014 | Published | Book Chapter | IST-REx-ID: 2044 |

Bauer, Ulrich, Michael Kerber, and Jan Reininghaus. “Clear and Compress: Computing Persistent Homology in Chunks.” In Topological Methods in Data Analysis and Visualization III, edited by Peer-Timo Bremer, Ingrid Hotz, Valerio Pascucci, and Ronald Peikert, 103–17. Mathematics and Visualization. Springer, 2014. https://doi.org/10.1007/978-3-319-04099-8_7.
[Submitted Version]
View
| DOI
| Download Submitted Version (ext.)