Clear and Compress: Computing Persistent Homology in Chunks

Bauer U, Kerber M, Reininghaus J. 2014.Clear and Compress: Computing Persistent Homology in Chunks. In: Topological Methods in Data Analysis and Visualization III. , 103–117.

Download (ext.)
OA http://arxiv.org/abs/1303.0477 [Submitted Version]

Book Chapter | Published | English

Scopus indexed
Author
Book Editor
Bremer, Peer-Timo; Hotz, Ingrid; Pascucci, Valerio; Peikert, Ronald

Corresponding author has ISTA affiliation

Department
Abstract
We present a parallel algorithm for computing the persistent homology of a filtered chain complex. Our approach differs from the commonly used reduction algorithm by first computing persistence pairs within local chunks, then simplifying the unpaired columns, and finally applying standard reduction on the simplified matrix. The approach generalizes a technique by Günther et al., which uses discrete Morse Theory to compute persistence; we derive the same worst-case complexity bound in a more general context. The algorithm employs several practical optimization techniques, which are of independent interest. Our sequential implementation of the algorithm is competitive with state-of-the-art methods, and we further improve the performance through parallel computation.
Publishing Year
Date Published
2014-03-19
Book Title
Topological Methods in Data Analysis and Visualization III
Publisher
Springer
Page
103 - 117
IST-REx-ID

Cite this

Bauer U, Kerber M, Reininghaus J. Clear and Compress: Computing Persistent Homology in Chunks. In: Bremer P-T, Hotz I, Pascucci V, Peikert R, eds. Topological Methods in Data Analysis and Visualization III. Mathematics and Visualization. Springer; 2014:103-117. doi:10.1007/978-3-319-04099-8_7
Bauer, U., Kerber, M., & Reininghaus, J. (2014). Clear and Compress: Computing Persistent Homology in Chunks. In P.-T. Bremer, I. Hotz, V. Pascucci, & R. Peikert (Eds.), Topological Methods in Data Analysis and Visualization III (pp. 103–117). Springer. https://doi.org/10.1007/978-3-319-04099-8_7
Bauer, Ulrich, Michael Kerber, and Jan Reininghaus. “Clear and Compress: Computing Persistent Homology in Chunks.” In Topological Methods in Data Analysis and Visualization III, edited by Peer-Timo Bremer, Ingrid Hotz, Valerio Pascucci, and Ronald Peikert, 103–17. Mathematics and Visualization. Springer, 2014. https://doi.org/10.1007/978-3-319-04099-8_7.
U. Bauer, M. Kerber, and J. Reininghaus, “Clear and Compress: Computing Persistent Homology in Chunks,” in Topological Methods in Data Analysis and Visualization III, P.-T. Bremer, I. Hotz, V. Pascucci, and R. Peikert, Eds. Springer, 2014, pp. 103–117.
Bauer U, Kerber M, Reininghaus J. 2014.Clear and Compress: Computing Persistent Homology in Chunks. In: Topological Methods in Data Analysis and Visualization III. , 103–117.
Bauer, Ulrich, et al. “Clear and Compress: Computing Persistent Homology in Chunks.” Topological Methods in Data Analysis and Visualization III, edited by Peer-Timo Bremer et al., Springer, 2014, pp. 103–17, doi:10.1007/978-3-319-04099-8_7.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar