Topological Complex Systems

Project Period: 2012-10-01 – 2015-09-30
Externally Funded
Acronym
TOPOSYS
Principal Investigator
Herbert Edelsbrunner
Department(s)
Edelsbrunner Group
Grant Number
318493
Funder
EC/FP7

20 Publications

2018 |Published| Journal Article | IST-REx-ID: 530 | OA
Multiple covers with balls I: Inclusion–exclusion
H. Edelsbrunner, M. Iglesias Ham, Computational Geometry: Theory and Applications 68 (2018) 119–133.
[Preprint] View | Files available | DOI | WoS
 
2017 |Published| Journal Article | IST-REx-ID: 718 | OA
Expected sizes of poisson Delaunay mosaics and their discrete Morse functions
H. Edelsbrunner, A. Nikitenko, M. Reitzner, Advances in Applied Probability 49 (2017) 745–767.
[Preprint] View | Files available | DOI | Download Preprint (ext.) | arXiv
 
2017 |Published| Journal Article | IST-REx-ID: 1433 | OA
Phat - Persistent homology algorithms toolbox
U. Bauer, M. Kerber, J. Reininghaus, H. Wagner, Journal of Symbolic Computation 78 (2017) 76–90.
[Published Version] View | Files available | DOI | Download Published Version (ext.) | WoS
 
2017 |Published| Journal Article | IST-REx-ID: 1173 | OA
The Voronoi functional is maximized by the Delaunay triangulation in the plane
H. Edelsbrunner, A. Glazyrin, O. Musin, A. Nikitenko, Combinatorica 37 (2017) 887–910.
[Submitted Version] View | DOI | Download Submitted Version (ext.) | WoS
 
2017 |Published| Journal Article | IST-REx-ID: 1072 | OA
The Morse theory of Čech and delaunay complexes
U. Bauer, H. Edelsbrunner, Transactions of the American Mathematical Society 369 (2017) 3741–3762.
[Preprint] View | DOI | Download Preprint (ext.) | WoS | arXiv
 
2017 |Published| Conference Paper | IST-REx-ID: 836
Finding eigenvalues of self-maps with the Kronecker canonical form
M. Ethier, G. Jablonski, M. Mrozek, in:, Special Sessions in Applications of Computer Algebra, Springer, 2017, pp. 119–136.
View | DOI | WoS
 
2016 |Published| Journal Article | IST-REx-ID: 1295
Multiple covers with balls II: Weighted averages
H. Edelsbrunner, M. Iglesias Ham, Electronic Notes in Discrete Mathematics 54 (2016) 169–174.
View | DOI
 
2016 |Published| Journal Article | IST-REx-ID: 1662 | OA
Approximation and convergence of the intrinsic volume
H. Edelsbrunner, F. Pausinger, Advances in Mathematics 287 (2016) 674–703.
[Published Version] View | Files available | DOI
 
2015 |Published| Conference Paper | IST-REx-ID: 1495 | OA
Relaxed disk packing
H. Edelsbrunner, M. Iglesias Ham, V. Kurlin, in:, Proceedings of the 27th Canadian Conference on Computational Geometry, Queen’s University, 2015, pp. 128–135.
[Submitted Version] View | Download Submitted Version (ext.)
 
2015 |Published| Journal Article | IST-REx-ID: 2035 | OA
The persistent homology of a self-map
H. Edelsbrunner, G. Jablonski, M. Mrozek, Foundations of Computational Mathematics 15 (2015) 1213–1244.
[Published Version] View | Files available | DOI
 
2015 |Published| Journal Article | IST-REx-ID: 1805
Homological reconstruction and simplification in R3
D. Attali, U. Bauer, O. Devillers, M. Glisse, A. Lieutier, Computational Geometry: Theory and Applications 48 (2015) 606–621.
View | Files available | DOI
 
2014 |Published| Book Chapter | IST-REx-ID: 10893
Toward the extraction of saddle periodic orbits
J. Kasten, J. Reininghaus, W. Reich, G. Scheuermann, in:, P.-T. Bremer, I. Hotz, V. Pascucci, R. Peikert (Eds.), Topological Methods in Data Analysis and Visualization III , Springer, Cham, 2014, pp. 55–69.
View | DOI
 
2014 |Published| Conference Paper | IST-REx-ID: 2043 | OA
Distributed computation of persistent homology
U. Bauer, M. Kerber, J. Reininghaus, in:, C. McGeoch, U. Meyer (Eds.), Proceedings of the Workshop on Algorithm Engineering and Experiments, Society of Industrial and Applied Mathematics, 2014, pp. 31–38.
[Submitted Version] View | DOI | Download Submitted Version (ext.)
 
2014 |Published| Book Chapter | IST-REx-ID: 2044 | OA
Clear and Compress: Computing Persistent Homology in Chunks
U. Bauer, M. Kerber, J. Reininghaus, in:, P.-T. Bremer, I. Hotz, V. Pascucci, R. Peikert (Eds.), Topological Methods in Data Analysis and Visualization III, Springer, 2014, pp. 103–117.
[Submitted Version] View | DOI | Download Submitted Version (ext.)
 
2014 |Published| Conference Paper | IST-REx-ID: 2153 | OA
Induced matchings of barcodes and the algebraic stability of persistence
U. Bauer, M. Lesnick, in:, Proceedings of the Annual Symposium on Computational Geometry, ACM, 2014, pp. 355–364.
[Submitted Version] View | DOI | Download Submitted Version (ext.)
 
2014 |Published| Conference Paper | IST-REx-ID: 2156 | OA
Measuring distance between Reeb graphs
U. Bauer, X. Ge, Y. Wang, in:, Proceedings of the Annual Symposium on Computational Geometry, ACM, 2014, pp. 464–473.
[Submitted Version] View | DOI | Download Submitted Version (ext.)
 
2014 |Published| Conference Paper | IST-REx-ID: 2155 | OA
The morse theory of Čech and Delaunay filtrations
U. Bauer, H. Edelsbrunner, in:, Proceedings of the Annual Symposium on Computational Geometry, ACM, 2014, pp. 484–490.
[Submitted Version] View | DOI | Download Submitted Version (ext.)
 
2014 |Published| Book Chapter | IST-REx-ID: 10817
Notes on the simplification of the Morse-Smale complex
D. Günther, J. Reininghaus, H.-P. Seidel, T. Weinkauf, in:, P.-T. Bremer, I. Hotz, V. Pascucci, R. Peikert (Eds.), Topological Methods in Data Analysis and Visualization III., Springer Nature, Cham, 2014, pp. 135–150.
View | DOI
 
2014 |Published| Journal Article | IST-REx-ID: 2255 | OA
Stable length estimates of tube-like shapes
H. Edelsbrunner, F. Pausinger, Journal of Mathematical Imaging and Vision 50 (2014) 164–177.
[Submitted Version] View | Files available | DOI
 
2013 |Published| Conference Paper | IST-REx-ID: 10897
Persistent homology in image processing
H. Edelsbrunner, in:, Graph-Based Representations in Pattern Recognition, Springer Nature, Berlin, Heidelberg, 2013, pp. 182–183.
View | DOI
 

Search

Filter Publications