Hana Kourimska
Edelsbrunner Group
5 Publications
2024 | Published | Conference Paper | IST-REx-ID: 17144 |
Kourimska, Hana, et al. “The Medial Axis of Any Closed Bounded Set Is Lipschitz Stable with Respect to the Hausdorff Distance Under Ambient Diffeomorphisms.” 40th International Symposium on Computational Geometry, vol. 293, 69, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024, doi:10.4230/LIPIcs.SoCG.2024.69.
[Published Version]
View
| Files available
| DOI
| arXiv
2024 | Published | Conference Paper | IST-REx-ID: 17170 |
Attali, Dominique, et al. “Tight Bounds for the Learning of Homotopy à La Niyogi, Smale, and Weinberger for Subsets of Euclidean Spaces and of Riemannian Manifolds.” 40th International Symposium on Computational Geometry, vol. 293, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024, p. 11:1-11:19, doi:10.4230/LIPIcs.SoCG.2024.11.
[Published Version]
View
| Files available
| DOI
| arXiv
2024 | Published | Conference Paper | IST-REx-ID: 18097 |
Attali, Dominique, et al. “The Ultimate Frontier: An Optimality Construction for Homotopy Inference (Media Exposition).” 40th International Symposium on Computational Geometry, vol. 293, 87, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024, doi:10.4230/LIPIcs.SoCG.2024.87.
[Published Version]
View
| Files available
| DOI
2023 | Published | Journal Article | IST-REx-ID: 12764 |
Kourimska, Hana. “Discrete Yamabe Problem for Polyhedral Surfaces.” Discrete and Computational Geometry, vol. 70, Springer Nature, 2023, pp. 123–53, doi:10.1007/s00454-023-00484-2.
[Published Version]
View
| Files available
| DOI
| WoS
2021 | Published | Journal Article | IST-REx-ID: 10071 |
Adams, Henry, et al. “How to Tutorial-a-Thon.” Notices of the American Mathematical Society, vol. 68, no. 9, American Mathematical Society, 2021, pp. 1511–14, doi:10.1090/noti2349.
[Published Version]
View
| DOI
| Download Published Version (ext.)
Grants
5 Publications
2024 | Published | Conference Paper | IST-REx-ID: 17144 |
Kourimska, Hana, et al. “The Medial Axis of Any Closed Bounded Set Is Lipschitz Stable with Respect to the Hausdorff Distance Under Ambient Diffeomorphisms.” 40th International Symposium on Computational Geometry, vol. 293, 69, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024, doi:10.4230/LIPIcs.SoCG.2024.69.
[Published Version]
View
| Files available
| DOI
| arXiv
2024 | Published | Conference Paper | IST-REx-ID: 17170 |
Attali, Dominique, et al. “Tight Bounds for the Learning of Homotopy à La Niyogi, Smale, and Weinberger for Subsets of Euclidean Spaces and of Riemannian Manifolds.” 40th International Symposium on Computational Geometry, vol. 293, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024, p. 11:1-11:19, doi:10.4230/LIPIcs.SoCG.2024.11.
[Published Version]
View
| Files available
| DOI
| arXiv
2024 | Published | Conference Paper | IST-REx-ID: 18097 |
Attali, Dominique, et al. “The Ultimate Frontier: An Optimality Construction for Homotopy Inference (Media Exposition).” 40th International Symposium on Computational Geometry, vol. 293, 87, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024, doi:10.4230/LIPIcs.SoCG.2024.87.
[Published Version]
View
| Files available
| DOI
2023 | Published | Journal Article | IST-REx-ID: 12764 |
Kourimska, Hana. “Discrete Yamabe Problem for Polyhedral Surfaces.” Discrete and Computational Geometry, vol. 70, Springer Nature, 2023, pp. 123–53, doi:10.1007/s00454-023-00484-2.
[Published Version]
View
| Files available
| DOI
| WoS
2021 | Published | Journal Article | IST-REx-ID: 10071 |
Adams, Henry, et al. “How to Tutorial-a-Thon.” Notices of the American Mathematical Society, vol. 68, no. 9, American Mathematical Society, 2021, pp. 1511–14, doi:10.1090/noti2349.
[Published Version]
View
| DOI
| Download Published Version (ext.)