The ultimate frontier: An optimality construction for homotopy inference (media exposition)

Attali D, Kourimska H, Fillmore CD, Ghosh I, Lieutier A, Stephenson ER, Wintraecken M. 2024. The ultimate frontier: An optimality construction for homotopy inference (media exposition). 40th International Symposium on Computational Geometry. SoCG: Symposium on Computational Geometry, LIPIcs, vol. 293, 87.

Download
OA 2024_LIPICs_Attali.pdf 3.51 MB [Published Version]

Conference Paper | Published | English

Corresponding author has ISTA affiliation

Department
Series Title
LIPIcs
Abstract
In our companion paper "Tight bounds for the learning of homotopy à la Niyogi, Smale, and Weinberger for subsets of Euclidean spaces and of Riemannian manifolds" we gave optimal bounds (in terms of the two one-sided Hausdorff distances) on a sample P of an input shape 𝒮 (either manifold or general set with positive reach) such that one can infer the homotopy of 𝒮 from the union of balls with some radius centred at P, both in Euclidean space and in a Riemannian manifold of bounded curvature. The construction showing the optimality of the bounds is not straightforward. The purpose of this video is to visualize and thus elucidate said construction in the Euclidean setting.
Publishing Year
Date Published
2024-06-06
Proceedings Title
40th International Symposium on Computational Geometry
Publisher
Schloss Dagstuhl - Leibniz-Zentrum für Informatik
Acknowledgement
This research has been supported by the European Research Council (ERC), grant No. 788183, by the Wittgenstein Prize, Austrian Science Fund (FWF), grant No. Z 342-N31, and by the DFG Collaborative Research Center TRR 109, Austrian Science Fund (FWF), grant No. I02979-N35. Mathijs Wintraecken: Supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 754411, the Austrian science fund (FWF) grant No. M-3073, and the welcome package from IDEX of the Université Côte d’Azur. We thank Jean-Daniel Boissonnat, Herbert Edelsbrunner, and Mariette Yvinec for discussion.
Volume
293
Article Number
87
Conference
SoCG: Symposium on Computational Geometry
Conference Location
Athens, Greece
Conference Date
2024-06-11 – 2024-06-14
IST-REx-ID

Cite this

Attali D, Kourimska H, Fillmore CD, et al. The ultimate frontier: An optimality construction for homotopy inference (media exposition). In: 40th International Symposium on Computational Geometry. Vol 293. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2024. doi:10.4230/LIPIcs.SoCG.2024.87
Attali, D., Kourimska, H., Fillmore, C. D., Ghosh, I., Lieutier, A., Stephenson, E. R., & Wintraecken, M. (2024). The ultimate frontier: An optimality construction for homotopy inference (media exposition). In 40th International Symposium on Computational Geometry (Vol. 293). Athens, Greece: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2024.87
Attali, Dominique, Hana Kourimska, Christopher D Fillmore, Ishika Ghosh, Andre Lieutier, Elizabeth R Stephenson, and Mathijs Wintraecken. “The Ultimate Frontier: An Optimality Construction for Homotopy Inference (Media Exposition).” In 40th International Symposium on Computational Geometry, Vol. 293. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. https://doi.org/10.4230/LIPIcs.SoCG.2024.87.
D. Attali et al., “The ultimate frontier: An optimality construction for homotopy inference (media exposition),” in 40th International Symposium on Computational Geometry, Athens, Greece, 2024, vol. 293.
Attali D, Kourimska H, Fillmore CD, Ghosh I, Lieutier A, Stephenson ER, Wintraecken M. 2024. The ultimate frontier: An optimality construction for homotopy inference (media exposition). 40th International Symposium on Computational Geometry. SoCG: Symposium on Computational Geometry, LIPIcs, vol. 293, 87.
Attali, Dominique, et al. “The Ultimate Frontier: An Optimality Construction for Homotopy Inference (Media Exposition).” 40th International Symposium on Computational Geometry, vol. 293, 87, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024, doi:10.4230/LIPIcs.SoCG.2024.87.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
Access Level
OA Open Access
Date Uploaded
2024-09-19
MD5 Checksum
9355c2e60b8ec285e1b22719c5b73f1a


Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar
ISBN Search