Physical mechanisms of ESCRT-III-driven cell division in archaea

Harker-Kirschneck L, Hafner AE, Yao T, Pulschen A, Hurtig F, Vanhille-Campos C, Hryniuk D, Culley S, Henriques R, Baum B, Šarić A. Physical mechanisms of ESCRT-III-driven cell division in archaea. bioRxiv, 10.1101/2021.03.23.436559.


Preprint | Submitted | English
Author
Harker-Kirschneck, L.; Hafner, A. E.; Yao, T.; Pulschen, A.; Hurtig, F.; Vanhille-Campos, C.; Hryniuk, D.; Culley, S.; Henriques, R.; Baum, B.; Šarić, AnđelaISTA
Abstract
Living systems propagate by undergoing rounds of cell growth and division. Cell division is at heart a physical process that requires mechanical forces, usually exerted by protein assemblies. Here we developed the first physical model for the division of archaeal cells, which despite their structural simplicity share machinery and evolutionary origins with eukaryotes. We show how active geometry changes of elastic ESCRT-III filaments, coupled to filament disassembly, are sufficient to efficiently split the cell. We explore how the non-equilibrium processes that govern the filament behaviour impact the resulting cell division. We show how a quantitative comparison between our simulations and dynamic data for ESCRTIII-mediated division in Sulfolobus acidocaldarius, the closest archaeal relative to eukaryotic cells that can currently be cultured in the lab, and reveal the most likely physical mechanism behind its division.
Publishing Year
Date Published
2021-03-23
Journal Title
bioRxiv
Publisher
Cold Spring Harbor Laboratory
Acknowledgement
We acknowledge support from the Biotechnology and Biological Sciences Research Council (L.H.K.), EPSRC (A.E.H), UCL IPLS (T.Y and D. H.), Wellcome Trust (203276/Z/16/Z, A.P., S.C., R. H., B.B.), Volkswagen Foundation (Az 96727, A.P., B.B., A.Š.), MRC (MC CF1226, R.H., B.B., A.Š.), the ERC grant (”NEPA” 802960, A.Š.), the Royal Society (C.V.-H., A.Š.), the UK Materials and Molecular Modelling Hub for computational resources (EP/P020194/1).
IST-REx-ID

Cite this

Harker-Kirschneck L, Hafner AE, Yao T, et al. Physical mechanisms of ESCRT-III-driven cell division in archaea. bioRxiv. doi:10.1101/2021.03.23.436559
Harker-Kirschneck, L., Hafner, A. E., Yao, T., Pulschen, A., Hurtig, F., Vanhille-Campos, C., … Šarić, A. (n.d.). Physical mechanisms of ESCRT-III-driven cell division in archaea. bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2021.03.23.436559
Harker-Kirschneck, L., A. E. Hafner, T. Yao, A. Pulschen, F. Hurtig, C. Vanhille-Campos, D. Hryniuk, et al. “Physical Mechanisms of ESCRT-III-Driven Cell Division in Archaea.” BioRxiv. Cold Spring Harbor Laboratory, n.d. https://doi.org/10.1101/2021.03.23.436559.
L. Harker-Kirschneck et al., “Physical mechanisms of ESCRT-III-driven cell division in archaea,” bioRxiv. Cold Spring Harbor Laboratory.
Harker-Kirschneck L, Hafner AE, Yao T, Pulschen A, Hurtig F, Vanhille-Campos C, Hryniuk D, Culley S, Henriques R, Baum B, Šarić A. Physical mechanisms of ESCRT-III-driven cell division in archaea. bioRxiv, 10.1101/2021.03.23.436559.
Harker-Kirschneck, L., et al. “Physical Mechanisms of ESCRT-III-Driven Cell Division in Archaea.” BioRxiv, Cold Spring Harbor Laboratory, doi:10.1101/2021.03.23.436559.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar