Generation of spin currents by a temperature gradient in a two-terminal device

Barfknecht RE, Foerster A, Zinner NT, Volosniev A. 2021. Generation of spin currents by a temperature gradient in a two-terminal device. Communications Physics. 4(1), 252.

Download
OA 2021_NatComm_Barfknecht.pdf 1.07 MB [Published Version]

Journal Article | Published | English

Scopus indexed
Author
Barfknecht, Rafael E.; Foerster, Angela; Zinner, Nikolaj T.; Volosniev, ArtemISTA
Department
Abstract
Theoretical and experimental studies of the interaction between spins and temperature are vital for the development of spin caloritronics, as they dictate the design of future devices. In this work, we propose a two-terminal cold-atom simulator to study that interaction. The proposed quantum simulator consists of strongly interacting atoms that occupy two temperature reservoirs connected by a one-dimensional link. First, we argue that the dynamics in the link can be described using an inhomogeneous Heisenberg spin chain whose couplings are defined by the local temperature. Second, we show the existence of a spin current in a system with a temperature difference by studying the dynamics that follows the spin-flip of an atom in the link. A temperature gradient accelerates the impurity in one direction more than in the other, leading to an overall spin current similar to the spin Seebeck effect.
Publishing Year
Date Published
2021-11-26
Journal Title
Communications Physics
Publisher
Springer Nature
Acknowledgement
The authors acknowledge support from the European QuantERA ERA-NET Cofund in Quantum Technologies (Project QTFLAG Grant Agreement No. 731473) (R.E.B), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) Brazil (A.F.), the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 754411 (A.G.V.), the Independent Research Fund Denmark, the Carlsberg Foundation, and Aarhus University Research Foundation under the Jens Christian Skou fellowship program (N.T.Z).
Volume
4
Issue
1
Article Number
252
eISSN
IST-REx-ID

Cite this

Barfknecht RE, Foerster A, Zinner NT, Volosniev A. Generation of spin currents by a temperature gradient in a two-terminal device. Communications Physics. 2021;4(1). doi:10.1038/s42005-021-00753-7
Barfknecht, R. E., Foerster, A., Zinner, N. T., & Volosniev, A. (2021). Generation of spin currents by a temperature gradient in a two-terminal device. Communications Physics. Springer Nature. https://doi.org/10.1038/s42005-021-00753-7
Barfknecht, Rafael E., Angela Foerster, Nikolaj T. Zinner, and Artem Volosniev. “Generation of Spin Currents by a Temperature Gradient in a Two-Terminal Device.” Communications Physics. Springer Nature, 2021. https://doi.org/10.1038/s42005-021-00753-7.
R. E. Barfknecht, A. Foerster, N. T. Zinner, and A. Volosniev, “Generation of spin currents by a temperature gradient in a two-terminal device,” Communications Physics, vol. 4, no. 1. Springer Nature, 2021.
Barfknecht RE, Foerster A, Zinner NT, Volosniev A. 2021. Generation of spin currents by a temperature gradient in a two-terminal device. Communications Physics. 4(1), 252.
Barfknecht, Rafael E., et al. “Generation of Spin Currents by a Temperature Gradient in a Two-Terminal Device.” Communications Physics, vol. 4, no. 1, 252, Springer Nature, 2021, doi:10.1038/s42005-021-00753-7.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2021-12-06
MD5 Checksum
9097319952cb9a3d96e7fd3aa9813a03


Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Sources

arXiv 2101.02020

Search this title in

Google Scholar