On the complexity of intersection non-emptiness for star-free language classes

Arrighi E, Fernau H, Hoffmann S, Holzer M, Jecker IR, De Oliveira Oliveira M, Wolf P. 2021. On the complexity of intersection non-emptiness for star-free language classes. 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. FSTTCS: Foundations of Software Technology and Theoretical Computer Science, LIPIcs, vol. 213, 34.

Download
OA 2021_LIPIcs_Arrighi.pdf 844.22 KB

Conference Paper | Published | English

Scopus indexed
Author
Arrighi, Emmanuel; Fernau, Henning; Hoffmann, Stefan; Holzer, Markus; Jecker, Ismael RISTA; De Oliveira Oliveira, Mateus; Wolf, Petra
Department
Series Title
LIPIcs
Abstract
In the Intersection Non-emptiness problem, we are given a list of finite automata A_1, A_2,… , A_m over a common alphabet Σ as input, and the goal is to determine whether some string w ∈ Σ^* lies in the intersection of the languages accepted by the automata in the list. We analyze the complexity of the Intersection Non-emptiness problem under the promise that all input automata accept a language in some level of the dot-depth hierarchy, or some level of the Straubing-Thérien hierarchy. Automata accepting languages from the lowest levels of these hierarchies arise naturally in the context of model checking. We identify a dichotomy in the dot-depth hierarchy by showing that the problem is already NP-complete when all input automata accept languages of the levels B_0 or B_{1/2} and already PSPACE-hard when all automata accept a language from the level B_1. Conversely, we identify a tetrachotomy in the Straubing-Thérien hierarchy. More precisely, we show that the problem is in AC^0 when restricted to level L_0; complete for L or NL, depending on the input representation, when restricted to languages in the level L_{1/2}; NP-complete when the input is given as DFAs accepting a language in L_1 or L_{3/2}; and finally, PSPACE-complete when the input automata accept languages in level L_2 or higher. Moreover, we show that the proof technique used to show containment in NP for DFAs accepting languages in L_1 or L_{3/2} does not generalize to the context of NFAs. To prove this, we identify a family of languages that provide an exponential separation between the state complexity of general NFAs and that of partially ordered NFAs. To the best of our knowledge, this is the first superpolynomial separation between these two models of computation.
Publishing Year
Date Published
2021-11-29
Proceedings Title
41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
Acknowledgement
We like to thank Lukas Fleischer and Michael Wehar for our discussions. This work started at the Schloss Dagstuhl Event 20483 Moderne Aspekte der Komplexitätstheorie in der Automatentheorie https://www.dagstuhl.de/20483.
Volume
213
Article Number
34
Conference
FSTTCS: Foundations of Software Technology and Theoretical Computer Science
Conference Location
Virtual
Conference Date
2021-12-15 – 2021-12-17
ISSN
IST-REx-ID

Cite this

Arrighi E, Fernau H, Hoffmann S, et al. On the complexity of intersection non-emptiness for star-free language classes. In: 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. Vol 213. Schloss Dagstuhl - Leibniz Zentrum für Informatik; 2021. doi:10.4230/LIPIcs.FSTTCS.2021.34
Arrighi, E., Fernau, H., Hoffmann, S., Holzer, M., Jecker, I. R., De Oliveira Oliveira, M., & Wolf, P. (2021). On the complexity of intersection non-emptiness for star-free language classes. In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (Vol. 213). Virtual: Schloss Dagstuhl - Leibniz Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.FSTTCS.2021.34
Arrighi, Emmanuel, Henning Fernau, Stefan Hoffmann, Markus Holzer, Ismael R Jecker, Mateus De Oliveira Oliveira, and Petra Wolf. “On the Complexity of Intersection Non-Emptiness for Star-Free Language Classes.” In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, Vol. 213. Schloss Dagstuhl - Leibniz Zentrum für Informatik, 2021. https://doi.org/10.4230/LIPIcs.FSTTCS.2021.34.
E. Arrighi et al., “On the complexity of intersection non-emptiness for star-free language classes,” in 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, Virtual, 2021, vol. 213.
Arrighi E, Fernau H, Hoffmann S, Holzer M, Jecker IR, De Oliveira Oliveira M, Wolf P. 2021. On the complexity of intersection non-emptiness for star-free language classes. 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. FSTTCS: Foundations of Software Technology and Theoretical Computer Science, LIPIcs, vol. 213, 34.
Arrighi, Emmanuel, et al. “On the Complexity of Intersection Non-Emptiness for Star-Free Language Classes.” 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, vol. 213, 34, Schloss Dagstuhl - Leibniz Zentrum für Informatik, 2021, doi:10.4230/LIPIcs.FSTTCS.2021.34.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
Access Level
OA Open Access
Date Uploaded
2022-01-17
MD5 Checksum
d5a82ba893c3bc5da5914edbb3efb92b


Export

Marked Publications

Open Data ISTA Research Explorer

Sources

arXiv 2110.01279

Search this title in

Google Scholar
ISBN Search